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The Challenge of Text in Interpretable ML
The Problem
Traditional text representations hinder the performance and usability of
"white-box" models (e.g., rule learning, decision trees).

Bag-of-Words (BoW) / TF-IDF
High dimensionality.
Features tied to specific words.
Leads to over-specific and
hard-to-interpret rules (spurious
interpretability).

Embeddings (e.g., BERT,
SciBERT)

High predictive performance
("black-box").
Complex, dense
representations.
Impossible to derive
interpretable rules directly.

Direct learning of an interpretable model is preferred (Atzmueller et al.,
2024).
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Motivation: Limitations of Rule Learning on BoW/TF-IDF
Prior Work: Direct Rule Learning on Text
We previously applied interpretable rule learning directly to text
representations (BoW/TF-IDF/Incidence Matrix) for citation prediction on
the CORD-19 dataset (Beranová et al., 2022).

Observed Challenges
High Dimensionality: Analyzing thousands of specific words.
Over-Specificity: Models capture literal word combinations.
Interpretability Issues: Results in many complex, overlapping rules.
Generalizability: Difficult to abstract specific findings into broader
concepts.

Conclusion
Direct application of white-box models on low-level text features often leads
to complex models requiring extensive post-processing (e.g., clustering).
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Motivation: Over-Specificity
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Figure: Visualization of rules linking words to citation counts (Beranova et al.,
2022).
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Figure: Visualization of rules linking words to
citation counts (Beranova et al., 2022).

Example Findings
{camel, east respiratory} →
Target=high

{canine, cells} → Target=low

Interpretation
The model learns separate patterns for
related terms (e.g., camel and
dromedary). While insightful, domain
expertise is required to abstract these
findings (e.g., relating these to
phylogenetic distance).
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Motivation: The Problem of Rule Complexity
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102 rules: {middle east, middle, merscov, mers, +127 items}
  7 rules: {central nervous, mice, bcv, mouse, +9 items}
 15 rules: {pathogens, east, developed, lower respiratory, +25 items}
 22 rules: {signaling, induction, envelope, airway, +35 items}
  1 rules: {bovine, cells, antibodies, middle east}
 12 rules: {enzymes, type interferon, evolutionary, unclear, +20 items}
 14 rules: {index, independent, studies, public health, +24 items}
 18 rules: {angiotensinconverting enzyme, serine, data suggest, similar, +32 items}
 17 rules: {method, rat, bovine coronavirus, central, +24 items}
 11 rules: {interactions, synthesis, screening, protective, +19 items}
 34 rules: {findings, regulatory, animal, pathogenesis, +54 items}
 21 rules: {cdna, demyelinating, kda, weight, +31 items}
 17 rules: {nonstructural, deaths, vaccines, induce, +30 items}
 12 rules: {inoculated, encoding, brain, mhv, +18 items}
 17 rules: {canine, detection, degree, mrnas, +23 items}
 18 rules: {enteritis, blot, translation, studied, +26 items}
 11 rules: {reveal, expression, recently, association, +18 items}
 17 rules: {gastroenteritis, signal, acid, contain, +30 items}
 26 rules: {antigen, quantitative, inoculation, specificity, +39 items}
 19 rules: {respiratory coronavirus, sites, sars patients, samples, +30 items}
 16 rules: {mature, identified, order, background, +25 items}
  6 rules: {isolated, feline, proteinase, wild type, +6 items}
  7 rules: {sars cov, provide, chemical, frame, +10 items}
  3 rules: {sars coronavirus, produced, role, assay, +2 items}
  5 rules: {oc43, pcr, respectively, days, +7 items}
  5 rules: {difference, mrna, significantly, peritonitis, +5 items}
  5 rules: {modified, contrast, N, residues, +7 items}
  1 rules: {bronchitis virus, cell, antibodies, middle east}
  5 rules: {function, lead, differential, associated, +6 items}
  1 rules: {}
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Grouped Matrix visualization required to manage 465 rules (Beranova et
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Figure: Grouped Matrix visualization
required to manage 465 rules (Beranova
et al., 2022).

Challenge: Model Complexity
Interpretable models can become
uninterpretable if they contain too
many rules.

Example: 465 Rules Generated
The rule learning algorithm (CBA)
generated 465 distinct rules.
Interpreting this volume requires
complex clustering/grouping
techniques.

Goal: Use LLMs to extract higher-level, abstract features to simplify
models.
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Proposed Solution: LLM-based Feature Generation
Hypothesis
Can Large Language Models (LLMs) extract a small number of high-level,
interpretable features from text?

Example: Research Impact Prediction
Instead of analyzing thousands of words in abstracts, extract concepts like:

Rigor: High/Medium/Low
Novelty: High/Medium/Low
Replicability: Yes/No

Contributions
1 Propose and evaluate two LLM-based feature generation workflows.
2 Assess feature quality (performance, interpretability, relevance).
3 Demonstrate utility for white-box models via Action Rules.
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Methodology: Two Proposed Workflows

Overview
We investigate two distinct workflows for LLM-assisted feature generation,
balancing automation and user control.

Workflow 1: User-Specified
Features

User defines the features
(based on domain
knowledge).
LLM calculates the values
using specific prompts.
Implementation: Llama2
13B (Local GPU).

Workflow 2: Automatic Feature
Discovery

LLM analyzes dataset samples.
LLM proposes relevant feature
names AND extraction prompts.
LLM calculates the values.
Implementation:
GPT-4o/GPT-4o-mini (API).
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Workflow 1: User-Specified Features (Example)
Approach
This workflow leverages domain expertise. Applied here to Scientometric
datasets, features were manually selected based on prior knowledge of
research impact factors.

Criteria Description Values

Rigor Methodological soundness {low, med, high}
Novelty Innovativeness {low, med, high}
Accessibility Understandability {low, med, high}
Replicability Mention of reproducibility {no, yes}
Grammar Presence of errors {no, yes}
Discipline Field of study (41 FORD) Binary

Table: Total of 62 features.
Example Prompt Snippet (Rigor)
...You will assess the methodological rigor... Choose between three
levels: low, medium and high... Your answer will consist of an answer
in plain json format... Abstract to be evaluated: <abstract>
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Workflow 2: Automatic Feature Discovery (Example)
Process
LLM (GPT-4o) receives dataset metadata and 40 sample rows. It proposes
≈20 relevant features and extraction prompts. Another LLM
(GPT-4o-mini) executes the prompts.

Example: Hate Speech Dataset
Features automatically discovered by the LLM:

Presence of Racial Slurs (Yes/No)
Sentiment Polarity (Positive/Neutral/Negative)
Use of Violent Language (Yes/No)
Mention of Ethnic Groups (Yes/No)

Advantage
Reduces human effort and the need for deep domain expertise in the initial
feature engineering phase.
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Use of LLM features in symbolic rule learning
What are Action Rules?
A method for deriving actionable insights by identifying specific changes
(actions) that lead to desired outcomes (Ras & Wieczorkowska, 2000).
They serve as counterfactual (what-if) explanations.

Attributes divided into Stable (e.g., Research Area) and Flexible
(e.g., Rigor); Goal: Transition from Undesired state → Desired state.

Example Action Rule (r3)
r3 : Area = Chemistry ∧ Rigor = (medium → high)

⇒ Evaluation = (bad → good)

with Uplift 15.0%

Interpretation
If articles in Chemistry improve rigor, the probability of a good evaluation
increases.
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Experimental Setup: Datasets and Software
Evaluated on 5 diverse datasets:

Scientometric Domain (Article Abstracts)
CORD-19: 3,000 articles (Coronaviruses). Target: Low/High Citation
Rate.
M17+: 2,000 articles (Czech research). Target: Expert quality grade
(1-5). Similar to UK REF.

Other Domains
BANKING77: 13k customer queries. Target: 77 intents.
Hate Speech: 10k sentences. Target: Hate Speech (Yes/No).
Food Hazard: 6.6k incident reports. Target: Hazard Category.

Software: Sỳkora and Kliegr, 2025. action-rules: GPU-accelerated Python
package for counterfactual explanations and recommendations. SoftwareX,
29, 102000.
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Experimental Setup: Models and Baselines

Feature Subsets Comparison
LLM-features only (Interpretable)
BoW (TF-IDF) only (Partly Interpretable Baseline)
BoW + LLM-features (Fusion)
SciBERT embeddings only (Black-box Baseline)

Evaluation
ML Algorithms: Gradient Boost, Random Forest, AutoGluon.
Metrics: Accuracy, F1 Score, Recall.
Explainability: SHAP (SHapley Additive exPlanations).
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Results: Predictive Performance (Scientometric, Manual
features)

Accuracy F1 Score

Model C19 M17+ C19 M17+

Black-Box/Fusion
Text + LLM (AutoGluon) 0.665 0.395 0.664 0.389
BoW + LLM-features 0.653 0.393 0.653 0.377
SciBERT embeddings 0.625 0.408 0.625 0.392

Interpretable/Baselines
TF-IDF (BoW) 0.625 0.343 0.622 0.332
LLM-features only 0.597 0.355 0.597 0.326
Naive classifier 0.502 0.180 0.502 0.180

Observations
M17+ (Harder task): LLM features alone outperform TF-IDF.

Fusion (BoW + LLM) improves performance over BoW alone.

Competitive with black-box embeddings while remaining interpretable.
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Results: Predictive Performance (Other Domains, Auto
features)

Accuracy Recall

Model B77 Hate Haz B77 Hate Haz

TF-IDF (BoW) 0.77 0.87 0.91 0.77 0.39 0.55
LLM-features only 0.59 0.65 0.93 0.64 0.52 0.64
Naïve classifier 0.01 0.87 0.37 0.01 0.22 0.05

Observations
Hate Speech: LLM features significantly improve Recall (+13 p.p.)
compared to TF-IDF, crucial for detection tasks.
Food Hazard: LLM features improve both Accuracy and Recall over
TF-IDF.
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Predicting Expert Grade (M17+: UK REF analogy)
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Figure: Automated Workflow (Left) vs User-Specified Features (Right).

Observations
Strong correspondence between top features in both workflows:

Grammar ↔ Language Complexity
Rigor ↔ Methodology Complexity
Novelty ↔ Research Impact

Higher novelty/rigor is linked to better evaluations.
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Results: Explainability (SHAP) - Other Domains
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Observations
Hate Speech: "Presence of Racial Slurs", Non-neutral sentiment, and Emotive
language are top predictors.

Food Hazard: "Hazard Type", "Contamination" reason, and "Salmonella" type
are key predictors.

Features discovered by LLM are highly interpretable and align with domain
intuition.
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Do automatically discovered features seem relevant to human users?
Surveyed 41 participants (academics, professionals, students).
Rated relevance of 100 auto-discovered features (Workflow 2) across 5
datasets.
Scale: 1 (Not relevant) to 5 (Relevant).
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Figure: Mean Relevance Scores (N=100
features)

Findings
Mean relevance score: 3.42.
Distribution is positively skewed.
Only 4/100 features were clearly
not relevant (mean < 2.0).
LLM rarely outputs irrelevant or
"hallucinated" features.
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Practical Application: Research Assessment (UK REF)

Context: Research Excellence Framework (REF)
UK system for assessing research quality in higher education.
Relies on expert review of institution outputs (e.g., papers), graded 4*
(World-leading) to 1*.

The M17+/M25+ Connection
The M17+ dataset is derived from the Czech methodology.
This system mirrors the UK REF exercise.

Application for Universities (UK and elsewhere)
1 Predict quality scores of papers before submission to REF.
2 Rank papers internally to optimize selection.
3 Use Action Rules to provide guidance on improving outputs before the

deadline.
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Conclusion
Summary
We demonstrated a novel approach using LLMs to extract low-dimensional,
interpretable features from text.

Key Findings
LLM-generated features offer competitive predictive performance while
retaining semantic meaning.
Both automated (Workflow 2) and user-specified (Workflow 1)
workflows are viable.
Features discovered automatically were perceived as relevant by
human users.
Successfully enabled the generation of understandable and actionable
rules (Action Rules).

Demo: https://shorturl.at/rcqDE
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Thank You

LLM-based feature generation from text for
interpretable machine learning

Vojtěch Balek, Lukáš Sýkora, Vilém Sklenák, Tomáš Kliegr

Questions?

Contact: tomas.kliegr@vse.cz
Code and Data: https://github.com/vojtech-balek/llm-features
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Action Rules and Uplift Explained
Derivation
An action rule (ra) is generated by combining two classification rules with
different outcomes (Ras & Wieczorkowska, 2000).

rundesired : Predicts the state before intervention.
rdesired : Predicts the state after intervention.

Uplift Measure
Uplift measures the incremental impact of an action over the entire dataset
(Radcliffe, 2007).

Uplift(ra) = P(Desired | Action)− P(Desired | No Action)

It reflects the percentage of the dataset population that would transition to
the desired state if the action were applied. (e.g., 15% uplift means 15% of
the total dataset improves).

Dominant Action Rules
To manage redundancy, we filter for "Dominant" rules: rules that cannot
be further expanded with additional conditions without decreasing the
uplift.
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Practical Application: M17+ Prediction Example
Example predictive models trained on M17+ data using AutoGluon.

Model 1: Text + LLM Features
Accuracy: 33.5% (2000 articles)

Model 2: Text + Metadata
(Larger)

Accuracy: 46% (4011 articles)

Note
While SOTA black-box models offer higher accuracy, interpretable models (using
LLM features) provide the transparency needed for Action Rules.
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