Beyond Scale: Performance Plateau and Cost Optimization in RAG Systems

About the Researcher

Mateusz Ploskonka

plom04@vse.cz

Current Position

PhD Student (1st year) in Applied Informatics at VSE Prague, researching cloud-based infrastructures and RAG systems

Professional Background

16+ years leading data and AI teams at Amazon, managing global technical organizations

Expertise

Cloud architectures, ML products, AI governance | AWS ML Specialty, IAPP AI Governance

The Challenge

Large Language Models face two key limitations:

- Cannot keep pace with rapidly generated new information
- Lack access to private knowledge bases

Retrieval-Augmented Generation (RAG)

Enriches prompts with relevant information from external knowledge sources to generate grounded responses.

Research Questions

- RQ1: Impact of LLM model size on RAG system response quality?
- RQ2: Is there a performance plateau threshold in model size?
- RQ3: Impact of model age on RAG system quality?
- RQ4: Impact of knowledge source generation methodology?
- RQ5: Are there cost-effective alternatives to largest models?

Methodology

Models Evaluated

32

Large Language Models

0.6B to 1T parameters Sept 2023 - Aug 2025

RAG Architectures

*RAG-FAISS:

Vector DB chunked retrieval

*RAG-FULL WIKI:

Full-text provision

*RAG-CONTEXT:

Curated excerpts

Dataset

BeleBele Benchmark

900 multiple-choice questions Weighted accuracy metric

Dataset

Reference source	Question	Answers	
https://en.wikivoyage.org/ wiki/Snow_safety	Which of the following is not a trigger for avalanches?	1)Sticky snow	
		2)Humans	
		3)Sunshine	
		4)Additional snowfall	
https://en.wikivoyage.org/ wiki/French_phrasebook	Which of the following is not the same in France as it is in Belgium or Switzerland?	1)The pronunciation of all words	
		2)The numbering system	
		3)The standard French taught in	
		schools	
		4)The spelling of some French words	

Table 2. Sample questions from the <u>BeleBele</u> dataset [<u>Bandarkar</u> et al., 2023]. Each question includes four response options with reference sources derived from Wikipedia content.

LLMs examples

Model Name	Developer	Parameters	Precision	Release
Qwen-3-0.6B	Qwen.ai	0.6B	BF16	May-25
Gemma-3-1B-Instruct	Google	1B	BF16	Mar-25
Llama-3.2-1B-Instruct	Meta-llama	1B	BF16	Sep-24
Falcon-3-1B-Instruct	Tiiuae	1B	BF16	Dec-24
Gemma-2-2B-Instruct	Google	2B	BF16	Jul-24
Llama-3.2-3B-Instruct	Meta-llama	3B	BF16	Sep-24
Falcon-3-3B-Instruct	Tiiuae	3B	BF16	Dec-24
Qwen-3-4B	Qwen.ai	4B	BF16	May-25
Gemma-3-4B-Instruct	Google	4B	BF16	Mar-25

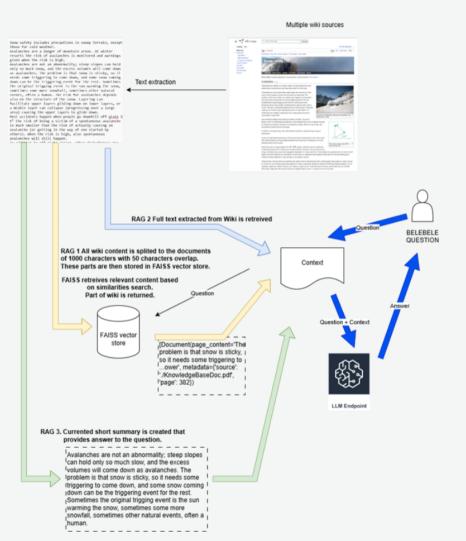
LLMs examples

Model Name	Developer	Parameters	Precision	Release
Mistral-Large-Instruct	Mistral.ai	123B	BF16	Feb-24
Qwen-3-235B-A22B-Instruct	Qwen.ai	235B	BF16	May-25
Llama-Nemotron-Ultra-253B	Nvidia	253B	BF16	Apr-25
GLM-4.5	Zaiorg	358B	BF16	Aug-25
Jamba-Large-1.5	Al21	399B	BF16	May-24
Llama-3.1-405B-Instruct-FP8	Meta-llama	405B	FP8	Jul-24
Hermes-4-405B	NousResearch	405B	BF16	Aug-25
Kimi-K2-Instruct	Moonshotai	1000B	BF16	Jan-25

Three RAG Architectures Tested

RAG-FAISS: Vector Database Retrieval

Articles chunked into 500-word segments, embedded, stored in FAISS vector database.

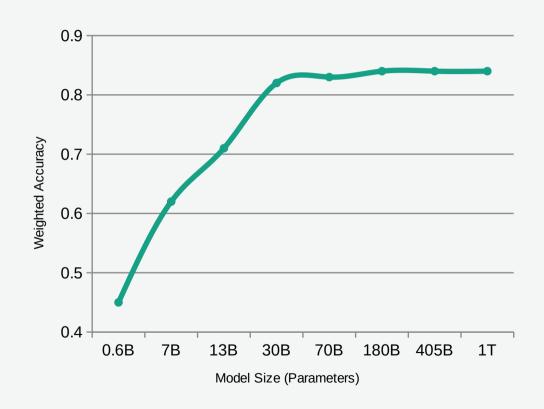

RAG-FULL WIKI: Complete Text Provision

Entire Wikipedia article provided to the LLM without chunking.

RAG-CONTEXT: Curated Excerpt Architecture

Manually curated, concise excerpt containing the answer.

Three RAG Architectures Tested

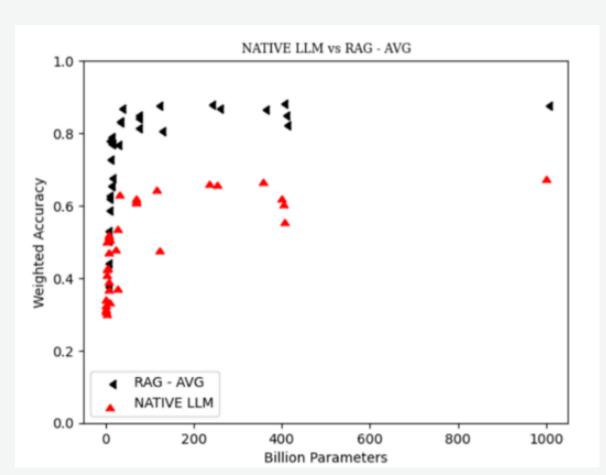


Key Finding: Performance Plateau at 30B Parameters

Critical Threshold

~30B

Beyond this point, increases in model size yield diminishing returns for RAG system performance.

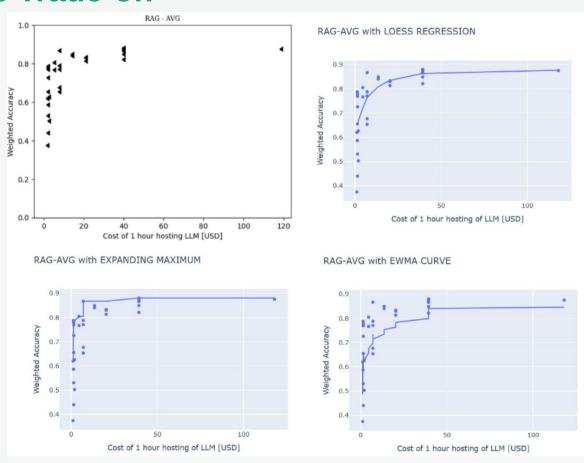


Key Finding: Performance Plateau at 30B Parameters

Critical Threshold

~30B

Beyond this point, increases in model size yield diminishing returns for RAG system performance.



Cost vs. Performance Trade-off

Potential Savings

60%

Cost reduction achievable by deploying optimally-sized models at 30B threshold vs. largest models.

Additional Key Insights

Temporal Invariance

Model release date showed minimal impact on RAG performance when controlling for parameter count. Newer models do not invariably outperform predecessors in retrieval-augmented contexts.

Knowledge Management Quality Matters Most

Curated excerpt architecture (RAG-CONTEXT) consistently outperformed both vector database retrieval and full-text provision methods. Content curation beats infrastructure sophistication.

Practical Recommendations for Practitioners

Optimize for the Plateau

Prioritize models around 30B parameters rather than defaulting to largest available models.

- Do not overestimate Model Recency
 - Model release date should not be a primary selection criterion for RAG deployments.
- Explore knowledge extracting methodologies
 - Content curation still stays most performing method for the accuracy of answer.
- Reassess Scaling Assumptions

 Challenge assumptions that equate model size and recency with quality in RAG contexts.

Conclusions

RAG system performance plateaus at approximately **30 billion parameters**, enabling up to **60% cost reductions** through strategic model selection.

Model recency shows minimal impact on performance. Knowledge management quality consistently outperforms retrieval infrastructure sophistication.

Impact: These findings enable more economically rational and environmentally sustainable AI system deployment strategies.

Thank You

Questions?

Beyond Scale: Performance Plateau and Cost Optimization in RAG Systems