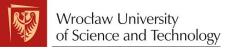


# Normalizing Flows - fundamental concepts and applications in counterfactual explanations

Maciej Zięba

GEIST Research Group 18.03.2025





### Department of Artificial Intelligence @ Wroclaw Tech

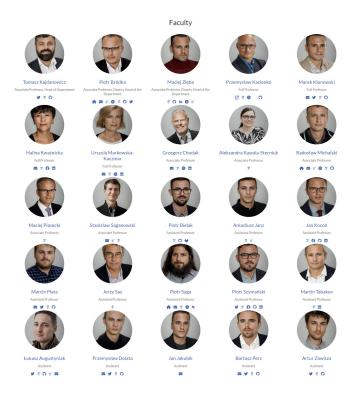
### Department of Al

- 5 full professors
- 8 associate professors
- 13 assistant professors
- over 50 PhD students

Master studies in Al 60 students per year

Just starting Engineering studies

https://ai.pwr.edu.pl/



### genwro.ai Research Group

### Research areas

- Generative modelling
- Uncertainty models
- Counterfactual representations
- 3D representations
- Few-shot learning
- Image enhancement

https://genwro.ai.pwr.edu.pl

# genwro.Al





























# Generative models - modern applications

legs, fused fingers, too many fingers, long neck

### Conditional image generation



| seeu                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1338                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| steps                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| width                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 512                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| height                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 728                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| prompt                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| RAW photo, a portrait photo of a latino man in casual clothes, natural skin, 8k uhd, high quality, film grain, Fujifilm XT3 $$                                                                                                                                                                                                                                                                                  |  |  |  |
| guidance                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| scheduler                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| EulerA                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| negative_prompt                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehvdrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured. |  |  |  |

### Generative models - preliminaries

Our goal is to find some approximation of true data distribution

$$p(\mathbf{x})$$

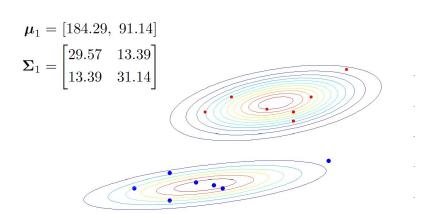
# But we have access only to the data examples



### Generative models - standard approach

### Standard approach assumes:

- Select some well known distribution as true data approximation.
- Get the parameters by ML/MAP estimation.
- Sample examples from approximation.

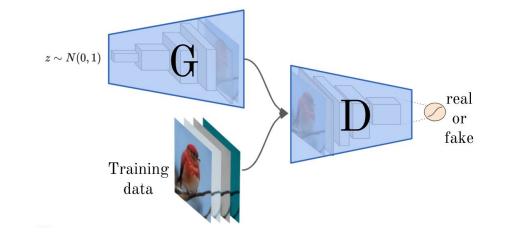


 $\mu_0 = [176.00, 64.86]$ 

### Generative models - GANs

Our goal is to find some approximation of true data distribution

$$p(\mathbf{x})$$

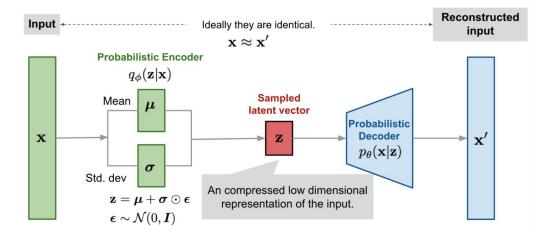


we can try to sample from p(x) without knowing the explicit form - GAN is some solution

### Generative models - VAEs

# Our goal is to find some approximation of true data distribution

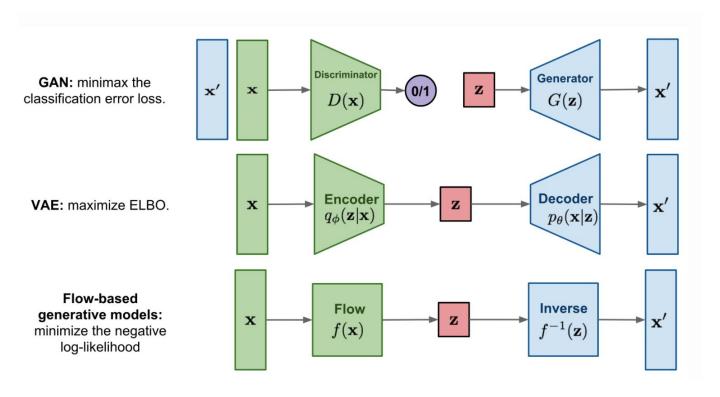
$$\ln p_{ heta}(x) \geq \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[ \ln rac{p_{ heta}(x,z)}{q_{\phi}(z|x)} 
ight]$$



Source: https://lilianweng.github.io/

We can estimate lower bound for p(x)

## Generative models - normalizing flows



Source: https://lilianweng.github.io/

# NI

Normalizing Flows - basic concepts

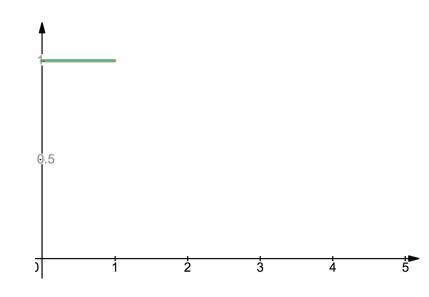
# Change of variable formula - example

# Consider density function for uniform distribution:

$$p_X(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$

We create a new random variable using the following transformation:

$$Y = f(X) = \sqrt{X}$$



What is density function for a new variable Y?

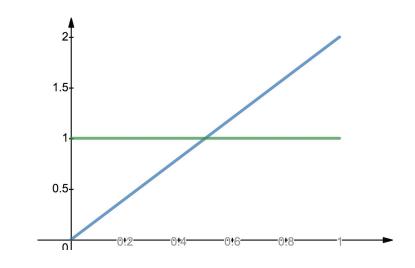
# Change of variable formula - example

### The new density function can be defined as:

$$p(y) = \begin{cases} 2y & 0 <= y <= 1 \\ 0 & otherwise \end{cases}$$

### Thanks to change of variable formula:

$$p_Y(y) = p_X(f^{-1}(y)) \left| \frac{df^{-1}(y)}{dy} \right|$$



### where:

$$f^{-1}(Y) = Y^2$$

# Change of variable formula - multidimensional case

### for multidimensional case:

$$p_Y(y) = p_X(f^{-1}(y)) \left| \frac{df^{-1}(y)}{dy} \right|$$

becomes:

$$p_{\mathbf{Y}}(\mathbf{y}) = p_{\mathbf{X}}(\mathbf{f}^{-1}(\mathbf{y})) |\det \mathbf{J}_{\mathbf{f}^{-1}}|$$

where:

$$\mathbf{J_{f^{-1}}} = \begin{bmatrix} \frac{\partial f_1^{-1}}{\partial y_1} & \dots & \frac{\partial f_1^{-1}}{\partial y_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_D^{-1}}{\partial y_1} & \dots & \frac{\partial f_D^{-1}}{\partial y_D} \end{bmatrix}$$

## Change of variable formula - multidimensional case

### It also works for:

$$p_X(x) = p_Y(f(x)) \left| \frac{df(x)}{dx} \right|$$

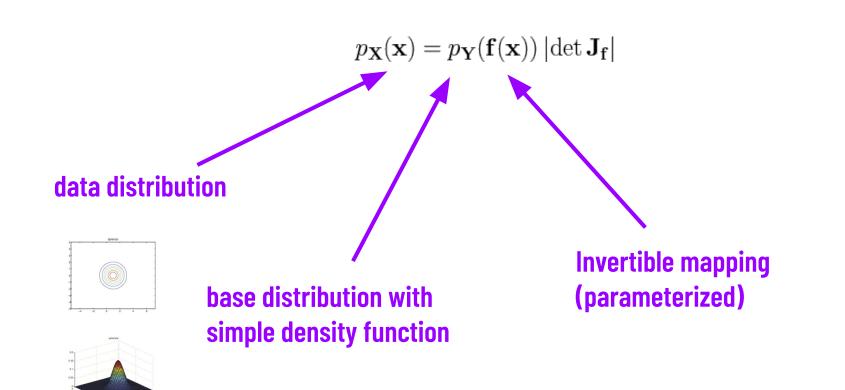
where:

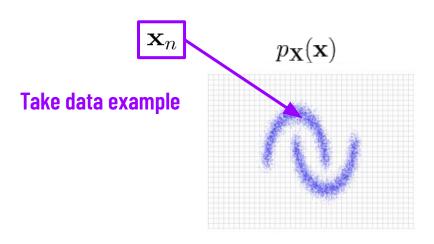
$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x})) |\det \mathbf{J}_{\mathbf{f}}|$$

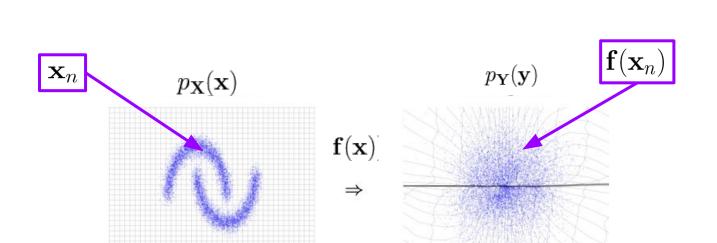
and:

$$\mathbf{J_f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_D}{\partial x_1} & \cdots & \frac{\partial f_D}{\partial x_D} \end{bmatrix}$$

# Change of variable formula for normalizing flows





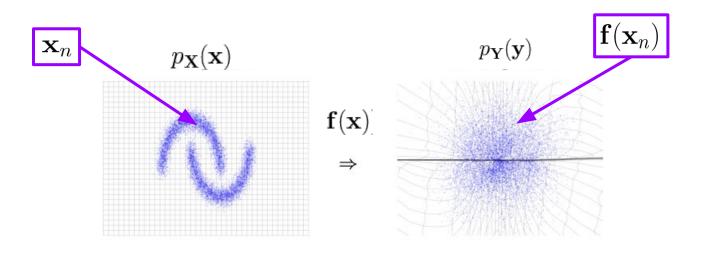


Transform it to Y space with known

base distribution

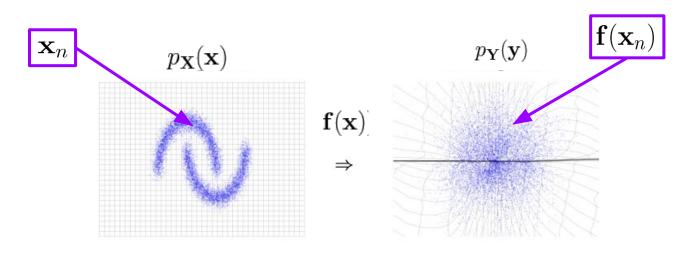
$$p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x}_n))$$

### Get the density value in Y space



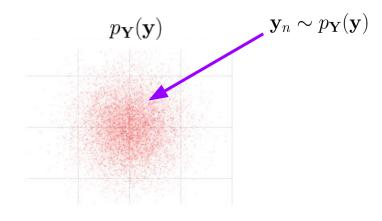
$$p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x}_n)) | \det \mathbf{J_f} |$$

### Scale by determinant of Jacobian



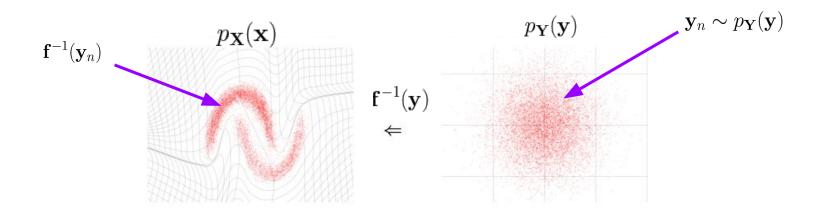
# Sampling with normalizing flows

Sample from known base distribution



# Sampling with normalizing flows

Apply invert transform to obtain sample from data distribution



# Training normalizing flows

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x})) |\det \mathbf{J}_{\mathbf{f}}|$$

We assume that invertible transformation is parametrized:

$$\mathbf{f}_{m{ heta}} := \mathbf{f}$$

# Training normalizing flows

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x})) |\det \mathbf{J}_{\mathbf{f}}|$$

We assume that invertible transformation is parametrized:

$$\mathbf{f}_{\boldsymbol{\theta}} := \mathbf{f}$$

We have access to training data:

$$\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$$

# Training normalizing flows

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Y}}(\mathbf{f}(\mathbf{x})) |\det \mathbf{J}_{\mathbf{f}}|$$

We assume that invertible transformation is parametrized:

$$\mathbf{f}_{\boldsymbol{\theta}} := \mathbf{f}$$

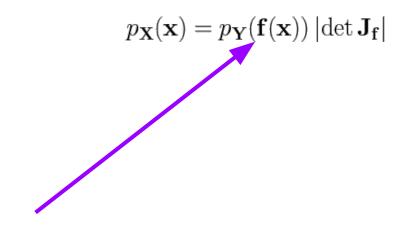
We have access to training data:

$$\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$$

We optimize negative log-likelihood to obtain the best parameters:

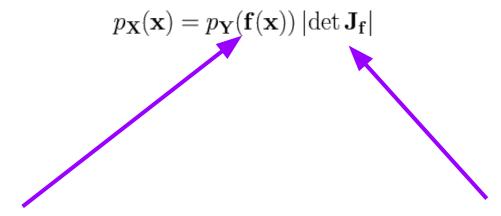
$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} - \sum_{n=1}^N \log(p_{\mathbf{X}(\mathbf{x}_n)})$$

# Normalizing flows - challenges



The choice of invertible function

# Normalizing flows - challenges



The choice of invertible function

Determinant of Jacobian is difficult to calculate for high-dimensional data

Make use of so called coupling layers - sequence of the following operations:

$$\begin{cases} y_1 = x_1 \\ y_2 = x_2 + m(x_1) \end{cases}$$

Dinh, Laurent, David Krueger, and Yoshua Bengio. "Nice: Non-linear independent components estimation." *arXiv preprint* arXiv:1410.8516 (2014).

Make use of so called coupling layers - sequence of the following operations:

$$\begin{cases} y_1 = x_1 & \text{m() is neural network} \\ y_2 = x_2 + m(x_1) & \text{Not need to be invertible!} \end{cases}$$

### Invert is easy to calculate:

$$\begin{cases} x_1 = y_1 \\ x_2 = y_2 - m(x_1) \end{cases}$$

and determinant of Jacobian is easy to calculate:

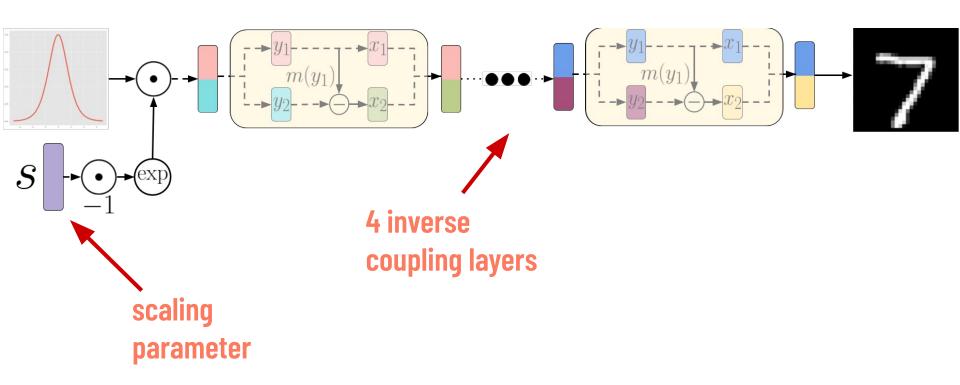
$$\begin{cases} y_1 = x_1 \\ y_2 = x_2 + m(x_1) \end{cases} \quad \mathbf{J_f} = \frac{\partial y}{\partial x} = \begin{bmatrix} I & 0 \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix}$$

$$\det \frac{\partial y_2}{\partial x_2} = 1 \Rightarrow \det \frac{\partial y}{\partial x} = 1$$

Dinh, Laurent, David Krueger, and Yoshua Bengio. "Nice: Non-linear independent components estimation." arXiv preprint arXiv:1410.8516 (2014).

## Coupling Layers working together

### **Inverse transformation**



# Discrete normalizing flows - RealNVP

$$y_{1:d} = x_{1:d}$$
  
 $y_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d})$ 

s() and t() are neural networks Not need to be invertible!

# Conditional normalizing flows

### RealNVP

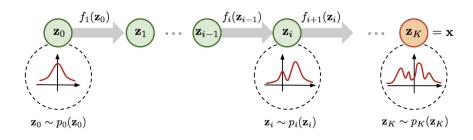
$$\begin{cases} y_1 = x_1 \\ y_2 = x_2 \odot \exp(s(x_1)) + m(x_1) \end{cases}$$

### **Conditional RealNVP**

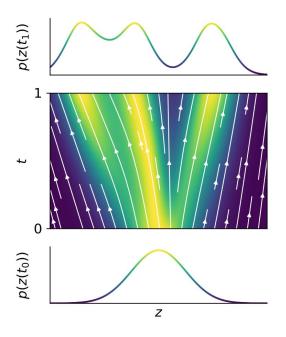
$$\begin{cases} y_1 = x_1 \\ y_2 = x_2 \odot \exp\left(s(x_1, z)\right) + m(x_1, z) \end{cases}$$

## Continuous Normalizing flows

### **Discrete Normalizing Flows**



### **Continuous Normalizing Flows**



Applications for counterfactual explanations

## Counterfactual explanations with flows

### Factual



| Age | Income | Debt | Accounts |
|-----|--------|------|----------|
| 28  | 800    | 200  | 5        |

### Counterfactual

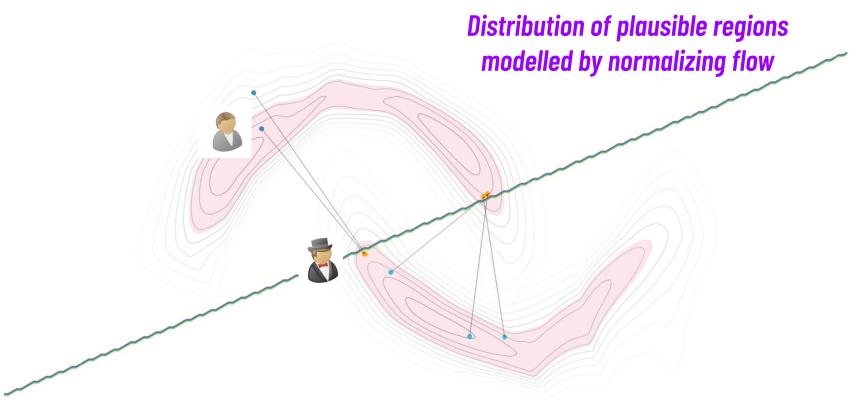


| Age | Income | Debt | Accounts |
|-----|--------|------|----------|
| 28  | 1000   | 200  | 3        |

### **Actionable Recourse:**

Your loan will be approved, if you increase income by \$200 and close two accounts.

**Source:** https://relational.ai/resources/machine-learning-in-consumer-credit

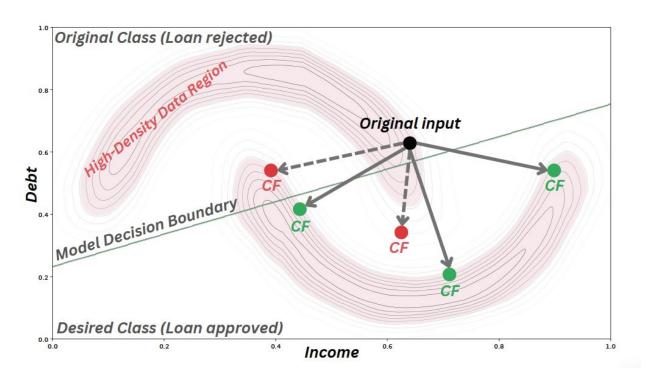


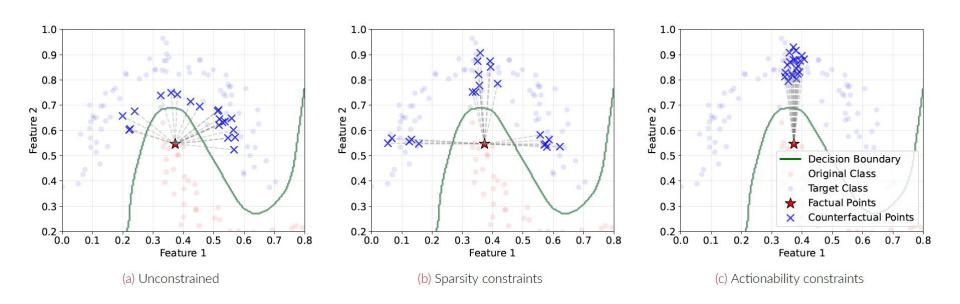
$$\arg\min_{\mathbf{x}'\in\mathbb{R}^d} d(\mathbf{x}_0,\mathbf{x}') + \lambda \cdot \left(\ell_v(\mathbf{x}',y') + \ell_p(\mathbf{x}',y')\right)$$

distance between original example and counterfactual

$$\arg\min_{\mathbf{x}'\in\mathbb{R}^d}d(\mathbf{x}_0,\mathbf{x}')+\lambda\cdot\left(\ell_v(\mathbf{x}',y')+\ell_p(\mathbf{x}',y')\right)$$
 validity loss to guarantee correct classification 
$$\ell_v(\mathbf{x}',y')=\max\Bigl(0.5+\epsilon-p_d(y'|\mathbf{x}'),0\Bigr)$$

$$\arg\min_{\mathbf{x}'\in\mathbb{R}^d}d(\mathbf{x}_0,\mathbf{x}')+\lambda\cdot\left(\ell_v(\mathbf{x}',y')+\ell_p(\mathbf{x}',y')\right)$$
 plausibility to get in-distribution sample 
$$\ell_p(\mathbf{x}',y')=\max\Bigl(\delta-\boxed{p(\mathbf{x}'|y')},0\Bigr)$$
 modelled with normalizing flow





### **Training Objective**

Minimize KL divergence between flow  $p_{\theta}$  and empirical distribution  $\hat{q}$ :

$$Q = -\mathbb{E}_{\mathbf{x}, y'} \mathbb{E}_{\mathbf{x}' \sim \hat{q}(\mathbf{x}'|\mathbf{x}, y', d_{n, \mathbf{m}})} [\log p_{\theta}(\mathbf{x}'|\mathbf{x}, y', p, \mathbf{m})]$$

### Empirical Distribution $\hat{q}$

Sample K neighbors from target class y':

$$\hat{q}(\mathbf{x}'|\mathbf{x}, y', d_{p, \mathbf{m}}) = \begin{cases} \frac{1}{K} & \text{if } \mathbf{x}' \in \mathcal{N}(\mathbf{x}, y', d_{p, \mathbf{m}}, K) \\ 0 & \text{otherwise} \end{cases}$$

This ensures validity, proximity, and plausibility by construction!

Sparsity via 
$$L_p$$
 norm $d_{p,\mathbf{m}}(\mathbf{x},\mathbf{x}')=lpha\sum_{j=1}^D m_j|x_j-x_j'|^p+\sum_{j=1}^D (1-m_j)|x_j-x_j'|^p$ 

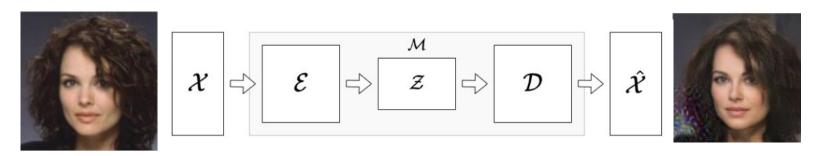
Actionability via feature masks m

Adjust p and m at inference — no retraining needed!

# Other applications for normalizing flows

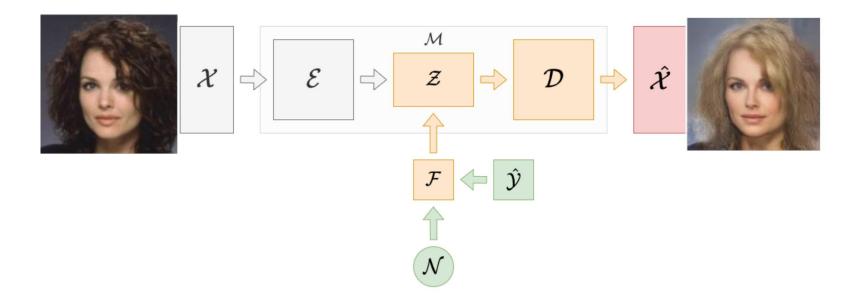
## Normalizing flow as a plug-in model for attribute manipulation

### We consider trained autoencoder



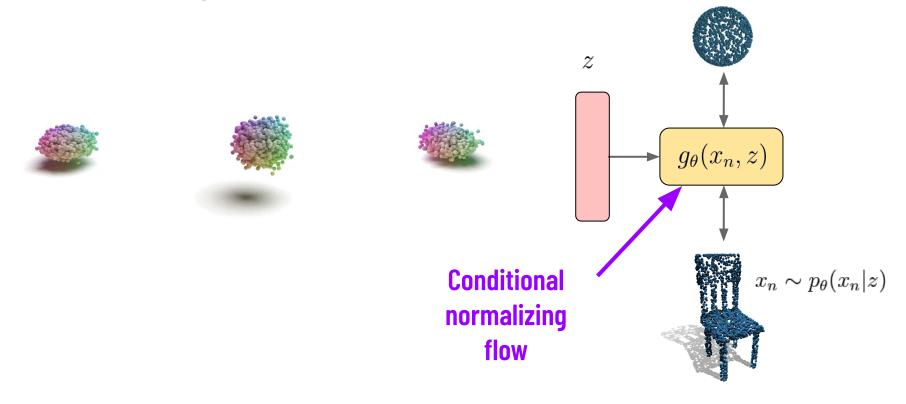
**Source:** Wielopolski, Patryk, Michał Koperski, and Maciej Zięba. "Flow Plugin Network for conditional generation." arXiv preprint arXiv:2110.04081 (2021).

# Normalizing flow as a plug-in model for attribute manipulation



**Source:** Wielopolski, Patryk, Michał Koperski, and Maciej Zięba. "Flow Plugin Network for conditional generation." arXiv preprint arXiv:2110.04081 (2021).

# Point cloud generation



**Source:** https://github.com/stevenygd/PointFlow

# Probabilistic regression with flows

**GOAL** 

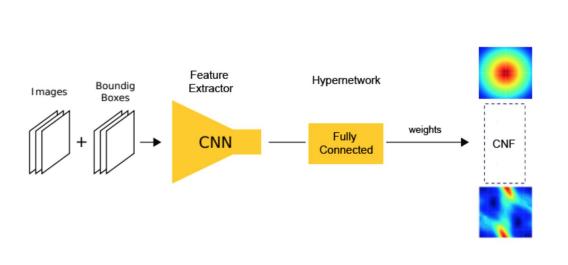
Predict location distribution after given period of time

The problem of probabilistic regression modelling



**Source:** Zięba, Maciej, et al. "RegFlow: Probabilistic Flow-based Regression for Future Prediction." ACIIDS 2024.

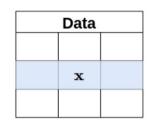
# Probabilistic regression with flows

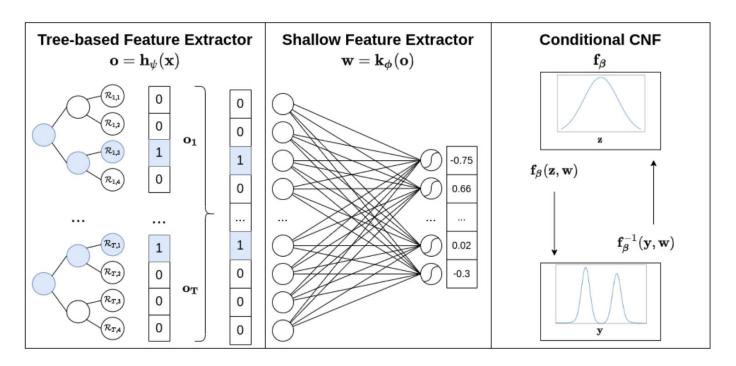




**Source:** Zięba, Maciej, et al. "RegFlow: Probabilistic Flow-based Regression for Future Prediction." ACIIDS 2024.

# Probabilistic regression with flows

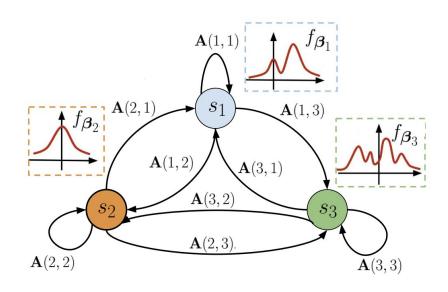




**Source:** Wielopolski, Patryk, and Maciej Zięba. "TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression." ECAI 2023

# Other flow applications

Figure 1: The concept of FlowHMM for L=3 states and transition matrix  ${\bf A}$ . Each emission distribution characterised by density  $f_{{\boldsymbol \beta}_l(\cdot)}$  is modeled using a separate flow component. Thanks to this, they can adjust to complex, non-Gaussian distributions.



Source: Lorek, Pawel, et al. "FlowHMM: Flow-based continuous hidden Markov models." NeurIPS 2022.

Thank you for your attention !!!