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Confession

Disclaimer: | wish this story did not happen. Unfortunately it did.

One week, during a team meeting, | presented feature importance scores for

&@ a model | had trained.

My coworker looked at them and said:
These scores don’t make sense. We need a better model.

The following week, | showed feature importance scores for the
é same model - but this time, estimated using a different method.

He smiled and said:
This looks perfect. Let’s move forward with this model.




At that moment, | asked myself:

Maybe feature importance methods
are not actually that useful after all?




saliency masks on the level of pixels are often
unsuited for laypersons
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Paez, A., Samek, W., Schneider, J., Speith, T. and Stumpf, S. 2024. Explainable Artificial Intelligence (XAl) 2.0: A manifesto of open challenges and interdisciplinary
research directions. An International Journal on Information Fusion, 106(102301), 102301. doi:10.1016/j.inffus.2024.102301

[12] Speith. T. 2022. How to evaluate explainability - a case for three criteria. Proceedings of the 30th IEEE International Requirements Engineering Conference
Workshops, REW 2022. pp. 92-97. doi:10.1109/REW56159.2022.00024
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Issues with pixel attribution

Model classification: Young Adult
Saliency map says: It is the teeth hue!

[11] Samek, W., Binder, A., Lapuschkin, S. and Miller, K.-R. 2017. Understanding and Comparing Deep Neural Networks for Age and Gender Classification. 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), 1629-1638. doi:10.1109/ICCVW.2017.191
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Issues with pixel attribution

Model classification: Young Adult

Reality: The smile gave it away.

So what?

Find meaningful concepts. Do not get distracted by pretty heatmaps or isolated numbers.

[11] Samek, W., Binder, A., Lapuschkin, S. and Miller, K.-R. 2017. Understanding and Comparing Deep Neural Networks for Age and Gender Classification. 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), 1629-1638. doi:10.1109/ICCVW.2017.191
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Abstract

Understanding black box models has become paramount as systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications.
In response, Explainable Al (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper highlights the advancements
in XAl and its application in real-world scenarios and addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative
efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAl in practical applications. By
fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAl forward, contributing to its continued success. We aim to develop a
comprehensive proposal for advancing XAl To achieve this goal, we present a manifesto of 28 open problems categorized into nine categories. These challenges
encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of
harnessing the collective intelligence of interested stakeholders.




Audiences without technical background are
often concerned with concepts, not with data

[9] Longo, L., Brcic, M., Cabitza, F., Choi, J., Confalonieri, R., Ser, 3. D., Guidotti, R., Hayashi, Y., Herrera, F., Holzinger, A., Jiang, R., Khosravi, H., Lecue, F., Malgieri, G.,
Paez, A., Samek, W., Schneider, J., Speith, T. and Stumpf, S. 2024. Explainable Artificial Intelligence (XAl) 2.0: A manifesto of open challenges and interdisciplinary
research directions. An International Journal on Information Fusion, 106(102301), 102301. doi:10.1016/j.inffus.2024.102301




Global prototype explanation
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The instances , , summarize class distributions - they

help us grasp what each class looks like to the model.




Local prototype explanation

o- ¢

The instance () belongs to class @ because
is more similar to @ than to




Finding prototypes = solving a k-Medoid problem

Finding prototypes is similar to solving a k-medoid problem - In both cases, one want to select
real instances that best represent the data by minimizing distances to other points.

N ’




How to quantify distance
between two instances?

By measuring distances in embedding spaces or other
internal model-specific representations.




Tree-space distance

T1 T2 T3

R1y2 R1’3 R3,1 R3,2
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[2] Breiman, L., 2001. Random forests. Machine Learning 45, 5-32. doi:10.1023/A:1010933404324.
[5] Karolczak, J. and Stefanowski, J. 2024. A-PETE: Adaptive Prototype Explanations of Tree Ensembles. Progress in Polish Artificial Intelligence Research 5 : Proceedings of the 5th Polish
Conference on Artificial Intelligence (PP-RAI'2024), 2-8. doi:10.17388/WUT.2024.0002.MiNI




Sounds easy, right?

The real world is messier
than dots on a whiteboard




Data may change over time
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[8] Kraus, A., van der Aa, H. 2025. Machine learning-based detection of concept drift in business processes. Process Sci 2, 5. doi: 10.1007/s44311-025-00012-w




Measuring difference between two sets of
prototypes

Mean minimal distance Mean centroid displacement

[6] Karolczak, J. and Stefanowski, J. 2025. Explaining Data Changes with Prototypes: A Measure-Driven Approach. Available at SSRN. doi:10.2139/ssrn.5208587




RACE-P:
Real-time
Analysis of
Concept
Evolution
with
Prototypes

Algorithm 1 RACE-P: Real-time Analysis of Concept Evolution with Prototypes
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Input: stream of examples S, grace period vy

Output: Alarm when a drift occurs

: Thistory » Yhistory < (@, )], [#, 4]
ce,peo,¢

¢ Asample <+ |]

: ARF <« initialize Adaptive Random Forest
: for i € {0...|S| — 1} do

ARF learn_chunk(z;, y;)
Thistory » Yhistory < [Thistory[1], Zi] , [Ynistory [1], ¥i]
e  [e[1], A-PETE(ARF)]
p < [p[1], e[1].find _prototypes(z;, y:)]
if 2 > 1 then
A « PRI(p[0], p[1])
if 7 <i <+ then
Asample-append(A)
if ¢ = v then
A, oA < avg(Asample), stddev(Agample)
if (1> v)A(A> pa +30a) then
alarm(” Drift detected!”)

> Reference Window Creation

> Drift Detection

[6] Karolczak, J. and Stefanowski, J. 2025. Explaining Data Changes with Prototypes: A Measure-Driven Approach. Available at SSRN. doi:10.2139/ssrn.5208587




RACE-P: Real-time Analysis of Concept
Evolution with Prototypes
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[6] Karolczak, J. and Stefanowski, J. 2025. Explaining Data Changes with Prototypes: A Measure-Driven Approach. Available at SSRN. doi:10.2139/ssrn.5208587




Interpreting prototypes

Value

AN —— Class 0
—— Class 1
——- Before drift
— After drift

Feature

[6] Karolczak, J. and Stefanowski, J. 2025. Explaining Data Changes with Prototypes: A Measure-Driven Approach. Available at SSRN. doi:10.2139/ssrn.5208587




Taxonomy

Prototype-based
explanations

Generated after model training
Any black-box model
Aims to explain an existing model

Often uses entire instances as prototypes




What to focus on?

Training instances often are described
by numerous features, but only a subset
contributes meaningfully to model
behavior or prototype similarity.




Guiding user attention to important parts

1.  Find the prototype nearest to the instance to explain.

2. Compute a feature mask highlighting features important for both the prototype and the
explained distance:

d
1
m=1 W[>—Zwk
dk=1

Size  Weight Sweetness Crunchiness Juiciness Ripeness Acidity

Instance ~2:77 -1.08 ~1.72 1.38 0.19 3.65 0.31

Prototype -0.97 -0.20 -3.07 0.00 ~0.92 3.16 -0.52
Weights 0.18 0.02 0.27 0.00 0.00 0.51 0.00

Mask 1 0 1 0 0 1 0

[7] Karolczak, J. and Stefanowski, J. 2025. This part looks alike this: identifying important parts of explained instances and prototypes. In proceedings of The 3rd World Conference on
eXplainable Artificial Intelligence

[10] Lundberg, S. and Lee, S. 2017. A unified approach to interpreting model predictions. In the Proceedings of the 31st International Conference on Neural Information Processing Systems.
pp. 4768-4777. doi:10.5555/3295222.3295230




Guiding user attention to important parts

1.  Find the prototype nearest to the instance to explain.

2. Compute a feature mask highlighting features important for both the prototype and the
explained distance:

1 d
m; = ]1(Wl> Ek;lwk

Size Weight Sweetness CrunchiWess Ripeness Acidity SHAP

Instance -2.77 -1.08 ~172 1.38 0.19 3.65 0.31

Prototype -0.97 -0.20 ~3.07 0.00 =0.92 3.16 -0.52
Weights 0.18 0.02 0.27 0.00 0.00 0.51 0.00
Mask 1 0 1 0 0 1 0

[7] Karolczak, J. and Stefanowski, J. 2025. This part looks alike this: identifying important parts of explained instances and prototypes. In proceedings of The 3rd World Conference on
eXplainable Artificial Intelligence

[10] Lundberg, S. and Lee, S. 2017. A unified approach to interpreting model predictions. In the Proceedings of the 31st International Conference on Neural Information Processing Systems
pp. 4768-4777. doi:10.5555/3295222.3295230




Feature Importance is
not the only option

In fact, post-hoc feature importance
estimators represents only one perspective.
The maijority of existing methods rely on
alternative strategies.




Taxonomy

Prototype-based
explanations

Integrated during model training
Intrinsically interpretable model
Ensures interpretability by design

Often uses parts or patches as prototypes

Generated after model training
Any black-box model
Aims to explain an existing model

Often uses entire instances as prototypes




ProtoPNet: Prototypical Part Network
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looks like

[3] Chen, C., Li, O., Tao, C., Barnett A. J., Su, J. and Rudin, C. 2019. This Looks like That: Deep Learning for Interpretable Image Recognition. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems.




ProtoPNet: Prototypical Part Network

Black footed albatross

Indigo bunting

Cardinal

Clay colored sparrow

Common yellowthroat

Similarity score
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Convolutional layers f Prototype layer g Fully connected layer / Output logits

[3] Chen, C., Li, O., Tao, C., Barnett A. J., Su, J. and Rudin, C. 2019. This Looks like That: Deep Learning for Interpretable Image Recognition. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems




Typical prototypical-part network training

1 Initial training

Train the network to learn artificial prototypical parts that capture representative
part-based features.

2 Prototype replacement

Replace the artificial prototypes with their nearest real parts from the dataset to
ground the model in real-world features.

3 Fine-tuning
Fine-tune the classification head using the real prototypical parts
To improve final prediction accuracy




When birds look like cars and other issues
with the approach

patches ‘look like’ prototypes similarity score
i | X network weight

input image

3.51 x 1.71 = 6.01
+

3.06 X 1.49 = 4.56
+

292 x 1.27 = 3.72

prediction score for class Crested Auklet: 25.9

[1] Baniecki, H. and Biecek. P, Birds look like cars: Adversarial analysis of intrinsically interpretable deep learning. 2025. Available at arXiv. doi:10.48550/arXiv.2503.08636




Prototypes are a versatile tool
that can improve performance
and understanding in many
domains




Learning at a Glance: Towards Interpretable Data-Limited Continual
Semantic Segmentation via Semantic-Invariance Modelling
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[13] Yuan, B., Zhao, D., and Shi, Z. 2024. Learning at a Glance: Towards Interpretable Data-Limited Continual Semantic Segmentation via Semantic-Invariance Modelling. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 46, no. 12, pp. 7909-7923, doi: 10.1109/TPAMI.2024.3396809




Mineral prediction based on prototype learning
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[4] Ding, L., Chen, B., Zhu, Y., Dong, H., Zhang, P. 2024. Mineral prediction based on prototype learning. In Computers & Geosciences, vol. 184, 105540, doi: 10.1016/j.cage0.2024.105540




Listening

Key takeaways carefully

to the entire

Explanations should be meaningful, presentation

not just numerically sound.

Prototypes (can) offer intuitive, concept-level Taking a

insights. photo of the
final takeaway

Do not overwhelm users - guide their attention to slide

what really matters.

Similarity is not just about raw features - it is about
internal model reasoning.

Using prototypes may not only support interpretability,
but also help with other challenges.
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Thanks!

Do you have any questions?
jacek.karolczak@cs.put.poznan.pl
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