Automated GitHub
Repository Quality
Evaluation: A Metrics-
Based Approach

Dmytro Polishchuk

Github overview

Ex. https://github.com/ansible/ansible

1. Commits
Commits represent individual changes to a repository’s codebase. Each commit records a
snapshot of the project’s state at a specific point in time.

2.lssues

Issues represent tasks, bugs, or feature requests within a repository. They are often used
to track the progress of software development and maintain a record of discussions
around various problems or enhancements.
https://github.com/ansible/ansible/issues/84909

3. Pull Requests (PRs)

Pull requests are used to propose changes to a repository. They are essential for
collaborative workflows, as they allow other contributors to review code changes before
merging them into the main codebase.
https://github.com/ansible-community/antsibull-nox/pull/26

4. Actions

GitHub Actions is a CI/CD tool that allows developers to automate workflows, such as
running tests, building applications, and deploying software when certain events occurin
a repository.

https://github.com/ansible-community/antsibull-nox/pull/26/checks

5.Timeline

The GitHub timeline is a chronological sequence of events that provides an overview of all
activities related to an issue or pull request. It captures all updates, comments, status
changes, and relevantinteractions.
https://github.com/ansible-community/antsibull-

https://github.com/ansible/ansible
https://github.com/ansible/ansible/issues/84909
https://github.com/ansible-community/antsibull-nox/pull/26
https://github.com/ansible-community/antsibull-nox/pull/26/commits/8b7f4e2dd368c7aa471bffd2ca6a3f7c5f918408
https://github.com/ansible-community/antsibull-nox/pull/26/commits/8b7f4e2dd368c7aa471bffd2ca6a3f7c5f918408

Github workflows:

Job 1 Job 2
Step 1: Run action Step 1: Run action
Step 2: Run script Step 2: Run script
Step 3: Run script Step 3: Run script

Step 4: Run action

on: push Job: check-bats-version

Step 1: Check out repository

- uses: actions/checkout@v3

Step 2: Install Node.js

- uses: actions/setup-node@v3

Step 3: Install bats

- run: npm install -g bats

Step 4: Run bats

- run: bats -v

Possible scenarios:

1. Merge main into feature

git checkout feature
git merge main

Feature

2. Rebase feature onto main

git checkout feature

i git rebase main
\L Feature
N
T
Main
A
Main
pick 33d5b7a Message for commit #1 Interactive rebase
pick 9480b3d Message for commit #2 glt rebase -i main
plck 5c67e61 Message for commit #3
et and Inesamiag Feature
\ ¢
plck 33d5b7a Message for commit #1 T
f}_'xip 9480b3d Message for commit #2 "
squdsh 5c67e61 Message for commit #3

Reset/Checkout/Revert

Bef Resetti Before Reverting
efore Resettin .
s Before Checking Out

v 0 p
a4
: /—; O——0 .

. Main
Main ¢

Main / HEAD

& Commit ta be reverted

After Resetting

- After Checking Out After Reverting
Removes changes from
the reverted commit \

Main

Main
Main

Git Hooks

Hooks executing during the commit creation process

Maintaining a hook using a symlink to version-controlled script
Pre-Commit Post-Commit
Notification Notification

Hooks
Hook
Symlink !|! !|!
— [—

User Actions
Stage Commit Enter Commit

All D !

Changes Changes Message -
.git/hooks
Git Repo
GitHub
GitHub WebHooks

N

git push Webhook it puliss
s build.sh

- 2
=

developer server

Best practices:
Reviewing a feature with a pull request

If you use pull requests as part of your code review process, you need to avoid using git rebase after creating the pull
request. As soon as you make the pull request, other developers will be looking at your commits, which means that
it’s a public branch. Re-writing its history will make it impossible for Git and your teammates to track any follow-up
commits added to the feature. Any changes from other developers need to be incorporated with git merge instead
of git rebase. For this reason, it’s usually a good idea to clean up your code with an interactive

rebase before submitting your pull request.

Integrating an approved feature

After a feature has been approved by your team, you have the option of rebasing the feature onto the tip of
the main branch before using git merge to integrate the feature into the main code base.

This is a similar situation to incorporating upstream changes into a feature branch, but since you're not allowed to re-
write commits in the main branch, you have to eventually use git merge to integrate the feature. However, by
performing a rebase before the merge, you’re assured that the merge will be fast-forwarded, resulting in a perfectly
linear history. This also gives you the chance to squash any follow-up commits added during a pull request.

2. Related Work and Background
2.1 Software Quality Models

Assessing software quality is a central concern in software engineering research, with various models developed to quantify and measure different aspects of quality.
Traditional approaches, such as the ISO/IEC 25000:2014 (https://www.iso.org/standard/64764.html) series (derived from ISO/IEC 25002:2024
https://www.iso.org/standard/78175.html), provide structured quality evaluation frameworks focused on attributes like maintainability, reliability, and usability. These
models define software quality from a product-oriented perspective but often overlook the dynamic aspects of software development, such as the role of development
workflows, community activity, and the structure of version control histories. Several models extend these traditional frameworks to better suit the open-source software
(OSS) landscape. The “Measuring the Quality of Open Source Software Ecosystems Using QUES0”

(https:/Iwww.researchgate.net/publication/300335654 _Measuring_the_Quality _of Open_Sou rce_Software_Ecosystems_Using_QUESo0) model was introduced to
address sustainability and maturity in open-source projects by considering both technical and community-related factors. The model highlights the importance of process
stability, development continuity, and project governance in assessing long-term software quality. Similarly, QUESo expands the scope by incorporating ecosystem-level
quality metrics, including project interdependencies, contributor engagement, and software reuse. These ecosystem oriented models provide valuable insights into
software quality at a higher level but do not focus on how specific development structures such as commit history topologies affect software maintainability and defect
rates. The role of software ecosystems in ensuring the sustainability of OSS projects has been widely studied. The " QUESo" introduces a comprehensive framework for
evaluating OSS ecosystems based on multiple quality dimensions, such as activity levels, stability, governance, and modularity. The study highlights that a well-
structured and active software ecosystem contributes to the long live stability and reliability of OSS projects, as continuous contributions and frequent interactions
between developers help maintain a project's health. Another relevant study, "Quality Evaluation Meta-Model for OSS — A Multi-Method Validation Study"
https://www.researchgate.net/publication/378003488 Quality evaluation_meta- model_for_open-source_software_multi-method_validation_study presents a meta-
model for software quality assessment, creating multiple prior approaches into a unified framework. The study emphasizes the importance of historical project data,
including commit activity, developer collaboration, and repository structure, as indicators of software sustainability and robustness. However, while these studies explore
high-level ecosystem characteristics and development patterns, they do not directly investigate the commit structure as a direced acyclic graph (DAG). The DAG
structure in version control systems encodes essential information about how a project evolves over time, capturing branching strategies, merge practices, and code
integration workflows. Understanding how these structural properties correlate with software quality can provide new insights into best practices for OSS development.

Data Set Collection

To study software evolution, bug-fixing patterns, and code maintenance, we need real-world
data.

Without a dataset, research becomes theoretical and lacks empirical evidence (other
researches are based on expert opinion in building evaluation model).

To ensure a comprehensive dataset, | selected:

Top 5 GitHub projects based on popularity, activity, and long-term maintenance.

Projects with at least 15+ years of history to capture long-term software evolution.

A proportional number of pull requests (PRs) and issues, ensuring a balanced dataset with
various software development patterns.

Preference for repositories with high collaboration and structured development workflows.

Collecting data from GitHub is not straightforward due to API constraints:

The GitHub API limits requests to 1,000 per hour per user, making large-scale data
collection difficult.

Workarounds such as caching responses and rate limit handling were implemented.
Orphaned Commits & Forks

Some commits do not belong to any branch, making them difficult to trace (orphaned
commits).

Implemented an enhanced SZZ algorithm to recover these orphaned commits.

Data Integrity & Completeness

Many PRs do not directly link to issues, requiring heuristics to infer bug-fixing commits.

Actions & workflows in CI/CD pipelines add additional complexity in identifying changes
tricoered bv hiio fixec

Architectural design:

Spring Boot
(possibly Play
framework)
A Metrix collection
ok service
GrafanaRepoing ~ pemeeeeeeeeeeeeeeeeee e
Docker containers
W
Datastore
SonarCube
Metrics
assessment i :
service H H
.. v A ; !
== |
i v ' : i H
Quality assessment | @ N3
: : . . U
““ Metrix Collector)
H ‘ FindBugs
| Pre-compiled quality model { :) ﬂ GITAPI
& s ; 5 L !
! ! 3 ! ESLint, e
77 >
Checkstyle

Git

Spring Boot - The Backend System
Manages services for metric collection and quality assessment.
Acts as the central orchestrator of the pipeline.

Metrics Collection Service
Responsible for gathering various software metrics.
Stores data in a Datastore (likely a database or time-series storage).

Docker Containers - Static Code Analysis Tools
SonarCube, PMG, FindBugs, ESLint, Checkstyle run inside Docker containers.
These tools analyze the code and generate reports on code quality, security, and bugs.

Metrics Assessment Service
Quality assessment component evaluates the collected data.
Uses a pre-compiled quality model to assess software quality.

Git API & GitHub Integration
Git API fetches repository data (e.g., commits, PRs, issues).

Reporting
Presents visual insights on collected data.

Proposed Schema

— 1.Project & Actions

reaction

Gie project: Stores project names and owners as a composite primary key.
actions: Stores actionsrelated to a project.

D project reaction_id \dT

{3 project name P 2 5
o s e e s e e EE SR L 2.File Changes & Commits
I . ' | file_change: Stores file change details such as additions, deletions,
and patch data.
05519) 5 5 . 6 5 L 1 1 9 file_change_changed_Llines: Links file changes to the number of lines
o TR = 3 1 A I - Tt) 1 changed.
B || |&2project name S EREEE S i commit: Stores commit details such as author, message, degree of
arapn it | = .‘ connectivity, and associated graphs.
= i“"’“"‘“ P v 0 ;l ks b e ‘ ? commit_file_changes: Links commits to file changes.
P glenul 4 pojespdlprjerp i, o ol o R TR e oy | 3.Graphs
agraph: Stores project graphs and links them to projects.
4.Reactions
reaction: Stores reactions (e.g., thumbs up, hearts) toissues or pull

lela oLk R i b bwieria bl {EREAE AR ; requests.

“project-name; projpctis<feprojec-owner:id, project_name, project_owner
~ [
ect

oject_name

project_project_nafne, project_project owner:project_name, project_owner

- project_pull_id:id| | project_pull_id:id !
@@ file_change | |

= project pull_id:id
gid roject_name

T roject_owner

project pu il | | 5.ProjectIssues & Pull Requests
. 1 ‘ 1 project_issue: Stores issue details, linking them to projects.
] ' project_pull: Stores pull request details, linking them to projects.
kol prjec ovmbric, projet farf, roectavpar| | D Project pull project issue EiprojEctpullprpfecticstios ? project_issue_bug_introducing_commits: Links issues to commits
_ A A G m s = | 7% project_pull_id 153 project_pull_id | .
L L S T T il it |11 |G ed— e — thatintroduced bugs.
@ file_change_changed, @ project_issue_labels | oject_pull_project_owner oject_pull_project_owner |
T | | i et | project_issue_commits: Links issues to commits that reference them.
ue_id, project_issue_projeict_jame, projedt_iskue| project owner:id, project_name, project :w}w ::::j::::::zzt:::r :::tj:::::::::z::::’:zr prOj eCt_i SSUe_labelS: Sto res la bels assoc iated W|th issueS.
commfs s B e S g S T T S T S L M e e ' project_issue_project_pull: Links issues to pull requests.
bug_introducing_commits_sha:shal = = . R . . .
(j B o Uleste procc ol project_pull_commits: Links pull requests to commits.
o B e / 573 project_issue_id | X . .
w c ‘ = \ \ i R project issue_project name (— project_pull_labels: Stores labels associated with pull requests.
@ commit_file_changes D project_issue_bug_introducing_commits D project_issue_commits oject_issue_project_owner D project_pull_commits 3
oject_pullid project_pull_project_issue: Links pullrequeststoissues.
oject_pull_project_name
time_linetd>id" . .
s b O 6.Timeline
f project_issue_time_line @ project_pull_time_line
(R project Jasue_id R project pullJd timeline: Stores timestamps and messages relatedtoissues or pull
7% project_issue_project_name @ timeline_pull_ids 7% project_pull_project_name
7% project_issue_project_owner 7% project_pull_project_owner requeStS-

173 time_line_id 53 time._line_id

project_issue_time_line: Links issues to timeline events.
project_pull_time_line: Links pull requests to timeline events.
timeline_pull_ids: Associates timeline entries with pull requests.

O RM VleW BaseMetric

AGraph FileChange

aGraph aGraph

projectPull

1

1|project 7 ProjectPuII *projectPull

project

ProjectID

Project PulllD

project

CommitID

IssuelD

. . Adding Commits (Vertices):
DAG of commits (pOSSI b ly d emo) Each commit (represented by SHA) is added as a vertex in the graph.
The Graph maintains a collection of Vertices (commits), each containing aunique SHA, neighbors
(other commits thatdepend onit), branches (where it belongs), and degree metrics.

Vertex Building Commit Relationships (Edges):
timestamp Date When a commit has parent commits (e.g., for merges), the Graph will add edges between these
commits.
averageDegree oI The addEdge method establishes these relationships and updates the in-degree and out-degree
arc__failed int properties of the vertices.
numberOfVertices int Tracking Commits:

The findParents method finds all parent commits for a given commit (sha).
The findChildren method finds all child commits.
outDegree int The findCommonAncestors method finds common ancestors between multiple commits, helping
neighbors Set<String> identify shared history in the commit graph.
Calculating Metrics:
The Graph computes metrics related to the graph structure (e.g., number of commits, branches,
numberOfBranches int edges).
sha String Vertex tracks the number of neighbors (out-degree) and the number of incoming edges (in-degree),
Ko Girsiee int helplng measurfa graph complexity.
) I I | & Commit Analysis:
GitMaintainable | (D & isMerge boolean The system analyzes commit depth (max/min depth), branching strategies, and merge count,
|G maxDepthOfCommitHistory int which are stored as properties in each Vertex.
The updateActionResult method links build results (passed/failed) with commits, updating the
commit graph accordingly.

arc__passed int

numberOfEdges int

() o LOGGER Logger |*
REQUEST_TIMEOUT int

minDepthOfCommitHistory int

f) o branches Set<String>

AN
*|vertices
|

I
«create»|
q I

[| | 1| | N

Graph
LOGGER Logger
commitRepository CommitRepository =
vertices Map<String, Vertex>
actionsRepository ActionsRepository

objectMapper ObjectMapper

Example of graph for ansible project

S
Q
AL
-
@]
[
i)
O
s

#

4.5

R
WA

e

%"=
=,
a9 8

%

Y

) «-_..3 =
7 m\ V
‘»&
b

o/ \m\\\ h

Vs

3y

>

i

\

s

\s{
-~

\ -
ardly

o
: /ﬁ. ,V
‘oo ¥\

)

Y, i
4

WS

RN
R

at
a - b
e @ /
» o
a | \ WI‘

- Y - X N
o A a m
|

3,
T

-0.5

0.5

-0.5

Commits that fix the issue:

((Qom | [Somen | pR [— [Preapur [omoouens | o) e e Ex. Find bug fixing commits
’ S ‘ " ‘ s ‘ -k https://github.com/facebook/react/issues/10
https://github.com/facebook/react/pull/11

https://github.com/facebook/react/pull/11/commits

—— Refrieve fixed issues —>

< - — Fixed issues list - — —

Check commits
ist

— Commits already added —

No commits

Retrievecommis URL — 5

Fetch commit data

Valid commit data

Save issue ——>

No valid data
< — - No commits found — —

No PR
<« - - NoPRlforissue - — —

o S N S N B

u T S system ijecﬂssueR BasicQueryS Pro;ecxPulle

Projectlssus Pva]ectPuII
epo ervice

CommitRepo

https://github.com/facebook/react/issues/10
https://github.com/facebook/react/pull/11
https://github.com/facebook/react/pull/11/commits

SZZ Algorythm (Software Bug-Inducing Commit Identification)
The algorithm tracks bug-fixing commits (commits that fix an issue) and then traces backward through the commit history to identify the bug-introducing
commits

g pepesten m “
— Start traceCommitsToOrigin >
—— Initialize repository —>
Build Git object ——>

Process each issue
L —

Issue has valid commits
¢« Validissue

Process each commit

Process each file change
—— Get changed lines —>

Process each line
D ——— L KT

Blamed commit found
€———— Return blamed commit SHA

Add bug introducing cormmit ————————————— 5

Blamed commit not found
< ——— Return null

Issue is invalid

—— Save updated issue —>

«——— Trace complete

Handle orphaned commits:

0 = D rlesyseem
Fetch commit ———>

Fetch from origin ——>

€ — Return commit data — —

& Check for lock file
o LT L L ——————d

b2l Lock exists
€—————— Lock file found

Delete lock file
D ———t i A X]

Success

Failure
€mmm Failed to delete

Stash changes

|

Reset to
commit

—

Create temp
branch

—

Checkout temp
branch

-

<« — Checkout complete — —
® o D FleSysiem

Orphaned commits example:
https://github.com/google/guava/commit/0
ceaed084bb/7e52d8fa3b0760cb0ffe48691
8a00

https://github.com/google/guava/commit/0ceaed084bb7e52d8fa3b0760cb0ffe486918a00
https://github.com/google/guava/commit/0ceaed084bb7e52d8fa3b0760cb0ffe486918a00
https://github.com/google/guava/commit/0ceaed084bb7e52d8fa3b0760cb0ffe486918a00

Working with the dataset

Issues Opened:

selectconcat(project_owner, '_', project_project_name) as project, date(created_at) astime, count(*) as issues_opened from project_issue group by project_owner, project_project_name,
date(created_at) order by date(created_at) asc;

Issues Closed:

SELECT CONCAT(project_owner, '_", project_project_name) AS project, DATE(closed_at) AS time, COUNT(*) AS issues_closed FROM project_issue WHERE closed_at IS NOTNULL GROUP
BY project_owner, project_project_name, DATE(closed_at) ORDER BY DATE(closed_at) ASC;

Total Developers Over Time:

SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, COUNT(DISTINCT c.author) AS num_developers FROM commit ¢ JOIN agraph ag ON
c.a_graph_id=ag.id JOIN project p ON ag.project_project_owner = p.project_owner AND ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name,
DATE(c.commit_date) ORDER BY DATE(c.commit_date) ASC;

Total Developers:

SELECT ag.project_project_ownerAS repo_owner, ag.project_project_name AS repo_project_name, COUNT(DISTINCT c.author) AS num_developers FROM commit c JOIN agraph ag ON
c.a_graph_id = ag.id GROUP BY ag.project_project_owner, ag.project_project_name ORDER BY num_developers DESC;

Total Deletions Per Commit Over Time:

SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, SUM(fc.total_deletions) AS total_deletions FROM file_change fc JOIN
commit_file_changes cfc ON fc.id = cfc.file_changes_id JOIN commit c ON cfc.commit_sha = c.sha JOIN agraph ag ON c.a_graph_id = ag.id JOIN project p ON ag.project_project_owner =
p.project_owner AND ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name, c.commit_date ORDER BY c.commit_date ASC;

Total Changes Per Commit Over Time:

SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, SUM(fc.total_changes) AS total_changes FROM file_change fc JOIN commit_file_changes
cfc ON fc.id = cfc.file_changes_id JOIN commit c ON cfc.commit_sha = c.sha JOIN agraph ag ON c.a_graph_id = ag.id JOIN project p ON ag.project_project_owner = p.project_owner AND
ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name, c.commit_date ORDER BY c.commit_date ASC;

Total Additions Per Commit Over Time:

SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, SUM(fc.total_additions) AS total_additions FROM file_change fc JOIN
commit_file_changes cfc ON fc.id = cfc.file_changes_id JOIN commit c ON cfc.commit_sha = c.sha JOIN agraph ag ON c.a_graph_id = ag.id JOIN project p ON ag.project_project_owner =
p.project_owner AND ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name, c.commit_date ORDER BY c.commit_date ASC;

Commit Activity Over Time:

SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, COUNT(c.sha) AS commitCount FROM commit c JOIN agraph ag ON c.a_graph_id = ag.id
JOIN project p ON p.project_owner = ag.project_project_owner AND p.project_name = ag.project_project_name GROUP BY p.project_owner, p.project_name, time ORDER BY time ASC;
PullRequest Review Time:

SELECT CONCAT(project_owner, '_', project_project_name) AS project, DATE(created_at) AS time, AVG(TIMESTAMPDIFF (DAY, created_at, closed_at)) AS avg_review_time FROM project_pull
where project_pull.closed_at IS NOTNULL GROUP BY project_owner, project_project_name, time ORDER BY time ASC;

Issue Resolution Time:

SELECT CONCAT(project_owner, ":', project_project_name) AS project, DATE(created_at) AS time, AVG(TIMESTAMPDIFF (DAY, created_at, closed_at)) AS avg_review_time FROM
project_issue where project_issue.closed_at IS NOTNULL GROUP BY project_owner, project_project_name, time ORDER BY time ASC;

{ Grafana in} Home » Dashboards model
9 9

Reporting | caen R

@ 201-02-22 01:00:00 to 2025-03-05 01:00:00 Q O Refresh

88 Dashboards Issues Opened Total Developers

6337

2013 2015 0 2019
= issues_opened ansible_ansible == issues_opened facebook_react == issues_opened goo

= issues_opened libret troArch Issues_opened oppla_oppls

Issues Closed

1000

2 Al

2013 015 2017 2 2021 3
tal_deietions ansible_ansible = total_deietions apache_tineract == total_deletions csm10495_commit-ment

ittt
2013 2015 e total_deletions dimmonn._test total_deletions facebook_react == total_deletions google_guava

ed ansible_ansible == issues_closed facebook_react == issues_closed google_guava == total_deletions kubernetes_kubern total_deletions libretro_RetroArch total_deletions micrc

»sed libretro_RetroArch ssues_closed oppia_oppia = total_deletions oppia_oppia

Total Changes Per Commit Over Time

140000

diaaaid

2021

num_developers ansible_snsible == num_developers apache_fineract == num_developers csm10495_comn total_changes ansible_snsible == total_changes apache_fineract == total_changes csm10495_commit-ment

s dimmonn_test num_developers facebook_react == num_developers google_guava total_changes g = total_changes facebook_react == total_changes googie.guava

num_developers kubernetes_kubernetes num_developers libretro_RetroArch num_developers microsoft vscode al_changes libretro_RetroArch total_changes microsoft vscode

Total Additions Per Commit Over Time

140000

il s e

2019 2021 2023 2025 2015 2017

== commitCount ansible_ansible == commitCount apache_fineract == commitCount csm10495_commit-ment == total_additions ansible_ansible == total_additions apache_fineract == total_additions csm10495_commit-ment

= commitCount dimmann_test == commitCount facebook_react == commitCount google_guava = total_additions dimmonn_test facebook_react == total_additions go

== commitCount kubernetes_kubernetes commitCount libretro_RetroArch commitCount microsoft vscode == total_addltions kubernetes_kubernetes total_additions libretro_RetroArch total_additions micr

Pull Request Review Time Issue Resolution Time
3000

Ao RE RY AN P ' AR IR TN AR oy
AT S YU TS TV W T R o AL Sy GBI R LTV

2013 2015 207 2019 2000 2023 2025 2 4 21 2021 023
jew_time ansible_ansible == avg_review_time apache_fineract == avg_review_time facebook_react e ansible:ansible == avg_review_time facebook:react == avg_review_time google:guava

ew_time google_guava avg_review_time libretro_RetroArch == avg_review_time oppla_oppia ew_time fibretro:RetroArch avg_review_time oppla:oppla

Data Analisys

https://github.com/dimmonn/gmode_compilation

DataCacheHandler

ANOVAAnalysis

AnalysisFactory

analyze()

get_analysis()

- . I Pearson DaeR son Analic 4 Ssi
AnalysisStrategy ChornTolssucsAnova ChornTol PCA ChornT gRegr y DagTolssuesPrAnova DagTolssuesPrPca DagTolssuesPrPearson
analysis,_strategy analysis_strategy analysis_strategy analysis_strategy analysis_strategy analysis_strategy analysis_strategy
dita dits data data data data data
analyze() features : list features : list features : list features : list features : list

generic_visualization()
visualize_anova()
visualize_correlation()
visualize _pca()

features : list
targets : list

features : list
targets : list

run()
visualize()

run()
visualize()

strategy_name : str

strategy name : str

strategy name : str

strategy name : str

strategy name : str

data : NoneType
db_contfig : dict
engine

file_path

query

targets : list targets : list targets : list targets : list targets : list
run() run() run() run() run()
visualize() visualize() visualize() visualize() visualize()

create_db_engine()
load_data()
load_from_csv()
load_from_json()
load_from_parquet()
load_from_pickle()
save to_csv()
save_to_json()
save_to_parquet()
save_to_pickle()

PCAAnal

-

orrelation

Y

analyze()

analyze()

generic_vi

ion()

https://github.com/dimmonn/qmode_compilation

Pearson Correlation Heatmap

commitCount - 027 [o3| 0.26 024
max_commit_depth - 0.29 0.45 0.58 0.56
avg_degree - 0.50 0.47 0.44 0.47
max_edges - 0.19 0.56 0.58
max_vertices - 0.17 057 0.55 0.54
& &
. 0‘5\ 6‘5\ . bﬁ\e N 63‘5
s Py & &7
\\& \\<° @@ 6.6‘
\0(\/ iﬂ ’ (_'0 (_O
5 o & &
S & > =
& g D7 >
K o & & rd
& & R
Y o7 o
& \Q" &
ot \\"
& L o
& &7
&
Spearman Correlation Heatmap
commitCount - 029 “ 028 030

max_commit_depth -
men_commit_depth
avg_degree -
max_degree -
max_branches -
max_edges -
max_vertices

max_files_changed

IO?
- 0.6

- 05
-0.4
-03

- 0.2

- 0.1
0.0

Higher complexity in commit structures
(max_commit_depth, max_degree, avg_degree) is
strongly associated with longer issue resolution times
and higher PR review times.

More interconnected commit graphs (higher
max_degree) correspond with more PRs and issues
being opened after commit dates.

The number of branches (max_branches) and number
of edges (max_edges) are also positively correlated with
issue and PR-related metrics.

Next steps:
Research relations:

Does the degree of a node (humber of merges) correlate
with the number of errors in actions in a Cl pipeline?
Does the number of branches commit went through
correlate with the number of issues it could cause?

Do commits with more than one parent (merge commits)
have a significantly different number of PRs compared to
linear commits?

Do projects with different numbers of branches have
different Cl pipeline execution errors?

What are the main factors influencing repository
complexity? (e.g., branches, PRs, actions)

Try to group repositories based on their commit structure

	Slide 1: Automated GitHub Repository Quality Evaluation: A Metrics-Based Approach
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

