
Automated GitHub 
Repository Quality 

Evaluation: A Metrics-
Based Approach

Dmytro Polishchuk



Github overview

Ex. https://github.com/ansible/ansible

1. Commits
Commits represent individual changes to a repository’s codebase. Each commit records a 
snapshot of the project’s state at a specific point in time.
2. Issues
Issues represent tasks, bugs, or feature requests within a repository. They are often used 
to track the progress of software development and maintain a record of discussions 
around various problems or enhancements.
https://github.com/ansible/ansible/issues/84909
3. Pull Requests (PRs)
Pull requests are used to propose changes to a repository. They are essential for 
collaborative workflows, as they allow other contributors to review code changes before 
merging them into the main codebase.
https://github.com/ansible-community/antsibull-nox/pull/26
4. Actions
GitHub Actions is a CI/CD tool that allows developers to automate workflows, such as 
running tests, building applications, and deploying software when certain events occur in 
a repository.
https://github.com/ansible-community/antsibull-nox/pull/26/checks
5. Timeline
The GitHub timeline is a chronological sequence of events that provides an overview of all 
activities related to an issue or pull request. It captures all updates, comments, status 
changes, and relevant interactions.
https://github.com/ansible-community/antsibull-
nox/pull/26/commits/8b7f4e2dd368c7aa471bffd2ca6a3f7c5f918408

https://github.com/ansible/ansible
https://github.com/ansible/ansible/issues/84909
https://github.com/ansible-community/antsibull-nox/pull/26
https://github.com/ansible-community/antsibull-nox/pull/26/commits/8b7f4e2dd368c7aa471bffd2ca6a3f7c5f918408
https://github.com/ansible-community/antsibull-nox/pull/26/commits/8b7f4e2dd368c7aa471bffd2ca6a3f7c5f918408


Github workflows:



Possible scenarios:

1. Merge main into feature

git checkout feature 
git merge main

2. Rebase feature onto main

git checkout feature
git rebase main

Interactive rebase
git rebase -i main

pick 33d5b7a Message for commit #1 

pick 9480b3d Message for commit #2 

pick 5c67e61 Message for commit #3

pick 33d5b7a Message for commit #1 

fixup 9480b3d Message for commit #2 

squash 5c67e61 Message for commit #3



Reset/Checkout/Revert



Git Hooks

GitHub WebHooks



Best practices:
Reviewing a feature with a pull request

If you use pull requests as part of your code review process, you need to avoid using git rebase after creating the pull 
request. As soon as you make the pull request, other developers will be looking at your commits, which means that 
it’s a public branch. Re-writing its history will make it impossible for Git and your teammates to track any follow-up 
commits added to the feature. Any changes from other developers need to be incorporated with git merge instead 
of git rebase. For this reason, it’s usually a good idea to clean up your code with an interactive 
rebase before submitting your pull request.

Integrating an approved feature

After a feature has been approved by your team, you have the option of rebasing the feature onto the tip of 
the main branch before using git merge to integrate the feature into the main code base.

This is a similar situation to incorporating upstream changes into a feature branch, but since you’re not allowed to re -
write commits in the main branch, you have to eventually use git merge to integrate the feature. However, by 
performing a rebase before the merge, you’re assured that the merge will be fast-forwarded, resulting in a perfectly 
linear history. This also gives you the chance to squash any follow-up commits added during a pull request.



2. Related Work and Background 

2.1 Software Quality Models 
Assessing software quality is a central concern in software engineering research, with various models developed to quantify and measure different aspects of quality. 

Traditional approaches, such as the ISO/IEC 25000:2014 (https://www.iso.org/standard/64764.html) series (derived from ISO/IEC 25002:2024 

https://www.iso.org/standard/78175.html), provide structured quality evaluation frameworks focused on attributes like maintainability, reliability, and usability. These 

models define software quality from a product-oriented perspective but often overlook the dynamic aspects of software development, such as the role of development 

workflows, community activity, and the structure of version control histories. Several models extend these traditional frameworks to better suit the open-source software 

(OSS) landscape. The “Measuring the Quality of Open Source Software Ecosystems Using QuESo” 

(https://www.researchgate.net/publication/300335654_Measuring_the_Quality_of_Open_Sou rce_Software_Ecosystems_Using_QuESo) model was introduced to 

address sustainability and maturity in open-source projects by considering both technical and community-related factors. The model highlights the importance of process 

stability, development continuity, and project governance in assessing long-term software quality. Similarly, QuESo expands the scope by incorporating ecosystem-level 

quality metrics, including project interdependencies, contributor engagement, and software reuse. These ecosystem oriented models provide valuable insights into 

software quality at a higher level but do not focus on how specific development structures such as commit history topologies affect software maintainability and defect 

rates. The role of software ecosystems in ensuring the sustainability of OSS projects has been widely studied. The " QuESo" introduces a comprehensive framework for 

evaluating OSS ecosystems based on multiple quality dimensions, such as activity levels, stability, governance, and modularity. The study highlights that a well-

structured and active software ecosystem contributes to the long live stability and reliability of OSS projects, as continuous contributions and frequent interactions 

between developers help maintain a project's health. Another relevant study, "Quality Evaluation Meta-Model for OSS – A Multi-Method Validation Study" 

https://www.researchgate.net/publication/378003488_Quality_evaluation_meta- model_for_open-source_software_multi-method_validation_study presents a meta-

model for software quality assessment, creating multiple prior approaches into a unified framework. The study emphasizes the importance of historical project data, 

including commit activity, developer collaboration, and repository structure, as indicators of software sustainability and robustness. However, while these studies explore 

high-level ecosystem characteristics and development patterns, they do not directly investigate the commit structure as a directed acyclic graph (DAG). The DAG 

structure in version control systems encodes essential information about how a project evolves over time, capturing branching strategies, merge practices, and code 

integration workflows. Understanding how these structural properties correlate with software quality can provide new insights into best practices for OSS development.



Data Set Collection

To study software evolution, bug-fixing patterns, and code maintenance, we need real-world 
data.
Without a dataset, research becomes theoretical and lacks empirical evidence (other 
researches are based on expert opinion in building evaluation model).
To ensure a comprehensive dataset, I selected:
- Top 5 GitHub projects based on popularity, activity, and long-term maintenance.
- Projects with at least 15+ years of history to capture long-term software evolution.
- A proportional number of pull requests (PRs) and issues, ensuring a balanced dataset with 

various software development patterns.
- Preference for repositories with high collaboration and structured development workflows.

Collecting data from GitHub is not straightforward due to API constraints:
- The GitHub API limits requests to 1,000 per hour per user, making large-scale data 

collection difficult.
- Workarounds such as caching responses and rate limit handling were implemented.
- Orphaned Commits & Forks
- Some commits do not belong to any branch, making them difficult to trace (orphaned 

commits).
- Implemented an enhanced SZZ algorithm to recover these orphaned commits.
- Data Integrity & Completeness
- Many PRs do not directly link to issues, requiring heuristics to infer bug-fixing commits.
- Actions & workflows in CI/CD pipelines add additional complexity in identifying changes 

triggered by bug fixes.



Architectural design:

Spring Boot - The Backend System
Manages services for metric collection and quality assessment.
Acts as the central orchestrator of the pipeline.

Metrics Collection Service
Responsible for gathering various software metrics.
Stores data in a Datastore (likely a database or time-series storage).

Docker Containers - Static Code Analysis Tools
SonarCube, PMG, FindBugs, ESLint, Checkstyle run inside Docker containers.
These tools analyze the code and generate reports on code quality, security, and bugs.

Metrics Assessment Service
Quality assessment component evaluates the collected data.
Uses a pre-compiled quality model to assess software quality.

Git API & GitHub Integration
Git API fetches repository data (e.g., commits, PRs, issues).

Reporting
Presents visual insights on collected data.



1. Project & Actions
project: Stores project names and owners as a composite primary key.
actions: Stores actions related to a project.

2. File Changes & Commits
file_change: Stores file change details such as additions, deletions, 
and patch data.
file_change_changed_lines: Links file changes to the number of lines 
changed.
commit: Stores commit details such as author, message, degree of 
connectivity, and associated graphs.
commit_file_changes: Links commits to file changes.
3. Graphs
agraph: Stores project graphs and links them to projects.
4. Reactions
reaction: Stores reactions (e.g., thumbs up, hearts) to issues or pull 
requests.
5. Project Issues & Pull Requests
project_issue: Stores issue details, linking them to projects.
project_pull: Stores pull request details, linking them to projects.
project_issue_bug_introducing_commits: Links issues to commits 
that introduced bugs.
project_issue_commits: Links issues to commits that reference them.
project_issue_labels: Stores labels associated with issues.
project_issue_project_pull: Links issues to pull requests.
project_pull_commits: Links pull requests to commits.
project_pull_labels: Stores labels associated with pull requests.
project_pull_project_issue: Links pull requests to issues.

6. Timeline
timeline: Stores timestamps and messages related to issues or pull 
requests.
project_issue_time_line: Links issues to timeline events.
project_pull_time_line: Links pull requests to timeline events.
timeline_pull_ids: Associates timeline entries with pull requests.

Proposed Schema



ORM view



DAG of commits (possibly demo)
Adding Commits (Vertices):
Each commit (represented by SHA) is added as a vertex in the graph.
The Graph maintains a collection of Vertices (commits), each containing a unique SHA, neighbors 
(other commits that depend on it), branches (where it belongs), and degree metrics.
Building Commit Relationships (Edges):
When a commit has parent commits (e.g., for merges), the Graph will add edges between these 
commits.
The addEdge method establishes these relationships and updates the in-degree and out-degree 
properties of the vertices.
Tracking Commits:
The findParents method finds all parent commits for a given commit (sha).
The findChildren method finds all child commits.
The findCommonAncestors method finds common ancestors between multiple commits, helping 
identify shared history in the commit graph.
Calculating Metrics:
The Graph computes metrics related to the graph structure (e.g., number of commits, branches, 
edges).
Vertex tracks the number of neighbors (out-degree) and the number of incoming edges (in-degree), 
helping measure graph complexity.
Commit Analysis:
The system analyzes commit depth (max/min depth), branching strategies, and merge count, 
which are stored as properties in each Vertex.
The updateActionResult method links build results (passed/failed) with commits, updating the 
commit graph accordingly.



Example of graph for ansible project



Commits that fix the issue:

Ex. Find bug fixing commits
https://github.com/facebook/react/issues/10
https://github.com/facebook/react/pull/11
https://github.com/facebook/react/pull/11/commits

https://github.com/facebook/react/issues/10
https://github.com/facebook/react/pull/11
https://github.com/facebook/react/pull/11/commits


SZZ Algorythm (Software Bug-Inducing Commit Identification)
The algorithm tracks bug-fixing commits (commits that fix an issue) and then traces backward through the commit history to identify the bug-introducing 
commits



Handle orphaned commits:
Orphaned commits example:
https://github.com/google/guava/commit/0
ceaed084bb7e52d8fa3b0760cb0ffe48691
8a00

https://github.com/google/guava/commit/0ceaed084bb7e52d8fa3b0760cb0ffe486918a00
https://github.com/google/guava/commit/0ceaed084bb7e52d8fa3b0760cb0ffe486918a00
https://github.com/google/guava/commit/0ceaed084bb7e52d8fa3b0760cb0ffe486918a00


Issues Opened:
select concat(project_owner, '_', project_project_name) as project, date(created_at) as time, count(*) as issues_opened from project_issue group by project_owner, project_project_name, 
date(created_at) order by date(created_at) asc;
Issues Closed:
SELECT CONCAT(project_owner, '_', project_project_name) AS project, DATE(closed_at) AS time, COUNT(*) AS issues_closed FROM project_issue WHERE closed_at IS NOT NULL GROUP 
BY project_owner, project_project_name, DATE(closed_at) ORDER BY DATE(closed_at) ASC;
Total Developers Over Time:
SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, COUNT(DISTINCT c.author) AS num_developers FROM commit c JOIN agraph ag ON 
c.a_graph_id = ag.id JOIN project p ON ag.project_project_owner = p.project_owner AND ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name, 
DATE(c.commit_date) ORDER BY DATE(c.commit_date) ASC;
Total Developers:
SELECT ag.project_project_owner AS repo_owner, ag.project_project_name AS repo_project_name, COUNT(DISTINCT c.author) AS num_developers FROM commit c JOIN agraph ag ON 
c.a_graph_id = ag.id GROUP BY ag.project_project_owner, ag.project_project_name ORDER BY num_developers DESC;
Total Deletions Per Commit Over Time:
SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, SUM(fc.total_deletions) AS total_deletions FROM file_change fc JOIN 
commit_file_changes cfc ON fc.id = cfc.file_changes_id JOIN commit c ON cfc.commit_sha = c.sha JOIN agraph ag ON c.a_graph_id = ag.id JOIN project p ON ag.project_project_owner = 
p.project_owner AND ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name, c.commit_date ORDER BY c.commit_date ASC;
Total Changes Per Commit Over Time:
SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, SUM(fc.total_changes) AS total_changes FROM file_change fc JOIN commit_file_changes 
cfc ON fc.id = cfc.file_changes_id JOIN commit c ON cfc.commit_sha = c.sha JOIN agraph ag ON c.a_graph_id = ag.id JOIN project p ON ag.project_project_owner = p.project_owner AND 
ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name, c.commit_date ORDER BY c.commit_date ASC;
Total Additions Per Commit Over Time:
SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, SUM(fc.total_additions) AS total_additions FROM file_change fc JOIN 
commit_file_changes cfc ON fc.id = cfc.file_changes_id JOIN commit c ON cfc.commit_sha = c.sha JOIN agraph ag ON c.a_graph_id = ag.id JOIN project p ON ag.project_project_owner = 
p.project_owner AND ag.project_project_name = p.project_name GROUP BY p.project_owner, p.project_name, c.commit_date ORDER BY c.commit_date ASC;
Commit Activity Over Time:
SELECT CONCAT(p.project_owner, '_', p.project_name) AS project, DATE(c.commit_date) AS time, COUNT(c.sha) AS commitCount FROM commit c JOIN agraph ag ON c.a_graph_id = ag.id 
JOIN project p ON p.project_owner = ag.project_project_owner AND p.project_name = ag.project_project_name GROUP BY p.project_owner, p.project_name, time ORDER BY time ASC;
Pull Request Review Time:
SELECT CONCAT(project_owner, '_', project_project_name) AS project, DATE(created_at) AS time, AVG(TIMESTAMPDIFF(DAY, created_at, closed_at)) AS avg_review_time FROM project_pull 
where project_pull.closed_at IS NOT NULL GROUP BY project_owner, project_project_name, time ORDER BY time ASC;
Issue Resolution Time:
SELECT CONCAT(project_owner, ':', project_project_name) AS project, DATE(created_at) AS time, AVG(TIMESTAMPDIFF(DAY, created_at, closed_at)) AS avg_review_time FROM 
project_issue where project_issue.closed_at IS NOT NULL GROUP BY project_owner, project_project_name, time ORDER BY time ASC;

Working with the dataset



Reporting



Data Analisys

https://github.com/dimmonn/qmode_compilation

https://github.com/dimmonn/qmode_compilation


Higher complexity in commit structures 
(max_commit_depth, max_degree, avg_degree) is 
strongly associated with longer issue resolution times 
and higher PR review times.
More interconnected commit graphs (higher 
max_degree) correspond with more PRs and issues 
being opened after commit dates.
The number of branches (max_branches) and number 
of edges (max_edges) are also positively correlated with 
issue and PR-related metrics.

Next steps:
Research relations:
- Does the degree of a node (number of merges) correlate 

with the number of errors in actions in a CI pipeline?
- Does the number of branches commit went through 

correlate with the number of issues it could cause?
- Do commits with more than one parent (merge commits) 

have a significantly different number of PRs compared to 
linear commits?

- Do projects with different numbers of branches have 
different CI pipeline execution errors?

- What are the main factors influencing repository 
complexity? (e.g., branches, PRs, actions)

- Try to group repositories based on their commit structure


	Slide 1: Automated GitHub Repository Quality Evaluation: A Metrics-Based Approach
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

