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dr inż. Bogdan Gulowaty

Artificial Intelligence in Research and Applications Seminar (AIRA)

29.05.2025

1 / 56



Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

5 Quad Split

6 Cross-method comparison

7 Summary

2 / 56



Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

5 Quad Split

6 Cross-method comparison

7 Summary

3 / 56



Hypothesis

For a given classification task, it is possible to build such a transparent or
explainable model whose quality is not worse than a similarly applied
black-box model
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Objectives

▶ Development of a novel ensemble ”glass-box” model extraction method
(like1)

▶ Development of novel transparent, ”glass-box” models

▶ Utilization of data complexity metrics in developing novel transparent
classification method

▶ Experimental evaluation of proposed algorithms

▶ Designing and implementing a programming library

1Omer Sagi and Lior Rokach. “Explainable decision forest: Transforming a decision
forest into an interpretable tree”. en. In: Information Fusion (2020).

5 / 56



Examples of not interpretable models

▶ Neural networks

▶ Ensemble models (Random forest)

▶ Non-linear Support vector machines
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Examples of interpretable models

▶ Decision trees

▶ Rules lists

▶ Linear regression

▶ Nearest neighbors model
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XAI taxonomies

▶ Intrinsic/Post-hoc

▶ Global/Local

▶ Model agnostic/Model specific
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Experimental evaluation setup

1. Fixed number of binary datasets (16)

2. Fixed number of complexity metrics (22) (from Lorena’s paper2)

3. 5x2 cross-validation

4. Statistical analysis with the sign test

5. Base classifiers were pretrained on hold-off datasets to find optimal
parameters

2Ana C. Lorena et al. “How Complex Is Your Classification Problem? A Survey on
Measuring Classification Complexity”. In: ACM Comput. Surv. (2019).
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Used datasets

name #instances #features #integer #real #nominal

appendicitis 106 7 0 7 0
australian 690 14 5 3 6
bands 365 19 6 13 0
breast 277 9 0 0 9
bupa 345 6 5 1 0
crx 653 15 3 3 9
haberman 306 3 3 0 0
heart 270 13 12 1 0
hepatitis 80 19 17 2 0
housevotes 232 16 0 0 16
ionosphere 351 33 1 32 0
mammographic 830 5 5 0 0
monk-2 432 6 6 0 0
saheart 462 9 3 5 1
tic-tac-toe 958 9 0 0 9
wisconsin 683 9 9 0 0
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Complexity metrics

metric low medium high

F1 < 0.49 0.49 − 0.757 > 0.757
F2 < 0.215 0.215 − 0.659 > 0.659
F3 < 0.824 0.824 − 0.948 > 0.948
F4 < 0.629 0.629 − 0.896 > 0.896
F1V < 0.145 0.145 − 0.417 > 0.417
C1 < 0.009 0.009 − 0.069 > 0.069
C2 < 0.024 0.024 − 0.172 > 0.172
L1 < 0.179 0.179 − 0.266 > 0.266
L2 < 0.194 0.194 − 0.297 > 0.297
L3 < 0.14 0.14 − 0.301 > 0.301
N1 < 0.111 0.111 − 0.195 > 0.195
N2 < 0.493 0.493 − 0.54 > 0.54
N3 < 0.219 0.219 − 0.377 > 0.377
N4 < 0.155 0.155 − 0.25 > 0.25
T1 < 0.588 0.588 − 0.822 > 0.822
T2 < 0.035 0.035 − 0.096 > 0.096
T3 < 0.022 0.022 − 0.043 > 0.043
T4 < 0.421 0.421 − 0.667 > 0.667
clsCoef < 0.081 0.081 − 0.368 > 0.368
hubs < 0.505 0.505 − 0.738 > 0.738
density < 0.718 0.718 − 0.879 > 0.879
LSC < 0.96 0.96 − 0.986 > 0.986
size < 306.0 306 − 462.0 > 462
features count < 9.0 9 − 14 > 14
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NOTE competence areas visualization
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NOTE algorithm (simplified)

1. Extract trees from random forest

2. Extract rules from the trees

3. Check each rule pair for overlapping

4. Model rules as a graph, where each node is rule and edge (relation)
means that rules do not overlap with each other

5. Using evaluation metric (e.g., accuracy) and cross-validation find best
performing clique (and set of rules)

6. Build final model by training decision tree in boundaries set by each rule
+ one default tree
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NOTE rules distillation visualization
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NOTE competence areas visualization
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NOTE experiments - tested parameters

▶ Random Forest sizes of 3, 5, 7

▶ Number of subspaces (clique size) of 3, 5, 7

▶ Decision Tree as base classifier
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NOTE - overall performance across complexities
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NOTE - dependencies on the subspace number
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NOTE - dependencies on the evaluation metric
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NOTE results - different forest size
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NOTE results - different forest size (test)
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NOTE - summary

▶ NOTE creates an explainable tree ensemble that can be competitive to
explain Random Forest

▶ It shows better performance when presented with more complex data

▶ There is space for finding better clique evaluation metrics, as shown by
the test data
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Optimal Centroids algorithm

▶ Use Genetic Algorithm to find the best position of centroids.
In each iteration: Build and evaluate a Decision Tree using samples that
fall into a given centroid area

▶ Build final model after optimization procedure ceases
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Optimal Centroid learning procedure
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DT vs OC decision boundaries
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OC results - overall performance across complexities

DT

RF

ONER

RULEFIT

GREEDY

33.33

21.67

66.67

41.67

58.33

16.67

18.33

1.67

20

3.33

50

60

31.67

38.33

38.33

Complexity low

BAC

34.69

18.37

57.14

36.73

53.06

0

0

0

2.04

0

65.31

81.63

42.86

61.22

46.94

Complexity medium

BAC

35.29

31.37

88.24

47.06

58.82

13.73

0

0

0

3.92

50.98

68.63

11.76

52.94

37.25

Complexity high

BAC

DT

RF

ONER

RULEFIT

GREEDY

36.67

18.33

66.67

35

53.33

16.67

16.67

1.67

20

3.33

46.67

65

31.67

45

43.33

F1

22.45

10.2

55.1

32.65

55.1

0

0

0

0

0

77.55

89.8

44.9

67.35

44.9

F1

37.25

27.45

92.16

47.06

62.75

11.76

0

0

0

1.96

50.98

72.55

7.84

52.94

35.29

F1

DT

RF

ONER

RULEFIT

GREEDY

31.67

23.33

68.33

41.67

58.33

16.67

18.33

1.67

20

3.33

51.67

58.33

30

38.33

38.33

GMean

40.82

36.73

59.18

40.82

57.14

0

0

0

0

0

59.18

63.27

40.82

59.18

42.86

GMean

43.14

37.25

94.12

49.02

64.71

13.73

0

0

0

3.92

43.14

62.75

5.88

50.98

31.37

GMean

better equal worse 31 / 56



OC results - overall performance for different number of subspaces
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Two ”XAI” variations

▶ For each subspace - select a tree from within the explained Random
Forest using the additional GA feature

▶ Pick the best tree from Random Forest for each centroid
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OC XAI variations - overall performance
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Optimal Centroids - summary

▶ Optimal Centroid uses Genetic Algorithm for finding optimal
distribution of decision spaces for tree ensemble

▶ It performs best for datasets of low and high complexity

▶ Both XAI variations perform roughly the same

▶ The more centroids are picked, the worse the accuracy
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Quad split learning procedure
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Quad split learning results - different base classifiers
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Quad split results
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Quad split results - different complexity metrics
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Quad Split - two ”XAI” variations

▶ Pick the best tree from the tree ensemble

▶ Train on RF output data
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Quad Split - two ”XAI” variations
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QS with picking trees - overall performance
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QS with training on RF’s output - overall performance
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Quad Split summary

▶ Quad Split algorithm can act as a viable solution for explaining Random
Forest by picking the best trees from the ensemble

▶ It behaves best with low-complexity datasets

▶ Quad Split is an inherently transparent model

45 / 56



Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

5 Quad Split

6 Cross-method comparison

7 Summary

46 / 56



Models compared

1. Optimal Centroids with tree selection (additional GA individual
parameter)

2. Quad Split with picking the best tree from RF

3. NOTE
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Measuring model’s complexity

model complexity formula

Quad Split
∑trees # of leaves + # of rules

Optimal Centroids
∑trees # of leaves + # of centroids

NOTE
∑trees # of leaves + # of rules
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Comparison of models’ complexity
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Performance against explained RF
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Hypothesis

For a given classification task, it is possible to build such a transparent or
explainable model whose quality is not worse than a similarly applied
black-box model
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Objectives

▶ Development of a novel ensemble ”glass-box” model extraction method
"

▶ Development of novel transparent, ”glass-box” models "

▶ Utilization of data complexity metrics in developing novel transparent
classification method "

▶ Experimental evaluation of proposed algorithms "

▶ Designing and implementing a programming library "
▶ https://github.com/bgulowaty/non-overlapping-rules-ensemble
▶ https://github.com/bgulowaty/optimal-centroids
▶ https://github.com/bgulowaty/quad-split
▶ https://github.com/bgulowaty/ml-utils
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Future works

1. Evaluate the stability of models

2. Evaluate the performance of proposed models against other tree
ensemble methods, such as XGBoost CatBoost

3. Validate models’ performance against other XAI methods, such as ebm,
lore, explan

4. Run experiments with human end-users/consumers of explanations

54 / 56



Future works

1. Evaluate the stability of models

2. Evaluate the performance of proposed models against other tree
ensemble methods, such as XGBoost CatBoost

3. Validate models’ performance against other XAI methods, such as ebm,
lore, explan

4. Run experiments with human end-users/consumers of explanations

54 / 56



Future works

1. Evaluate the stability of models

2. Evaluate the performance of proposed models against other tree
ensemble methods, such as XGBoost CatBoost

3. Validate models’ performance against other XAI methods, such as ebm,
lore, explan

4. Run experiments with human end-users/consumers of explanations

54 / 56



Future works

1. Evaluate the stability of models

2. Evaluate the performance of proposed models against other tree
ensemble methods, such as XGBoost CatBoost

3. Validate models’ performance against other XAI methods, such as ebm,
lore, explan

4. Run experiments with human end-users/consumers of explanations

54 / 56



Building transparent classification models

dr inż. Bogdan Gulowaty

Artificial Intelligence in Research and Applications Seminar (AIRA)

29.05.2025
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Publications

▶ Bogdan Gulowaty, Micha l Woźniak, Extracting interpretable decision
tree ensemble from random forest, International Joint Conference on
Neural Networks IJCNN 2021 (CORE rank A, 140 p. MNiSzW)

▶ Bogdan Gulowaty, Micha l Woźniak, Search-based framework for
transparent non-overlapping ensemble models, International Joint
Conference on Neural Networks IJCNN 2022 (CORE rank A, 140 p.
MNiSzW)
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