

Wrocław University of Science and Technology

dr inż. Bogdan Gulowaty

Artificial Intelligence in Research and Applications Seminar (AIRA)

29.05.2025

Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

5 Quad Split

6 Cross-method comparison

Summary

Outline

1 Introduction

- 2 Methodology
- **3** Non Overlapping Tree Ensemble
- **4** Optimal Centroids
- **6** Quad Split
- 6 Cross-method comparison
- **7** Summary

Hypothesis

For a given classification task, it is possible to build such a transparent or explainable model whose quality is not worse than a similarly applied black-box model

Objectives

- Development of a novel ensemble "glass-box" model extraction method (like¹)
- Development of novel transparent, "glass-box" models
- Utilization of data complexity metrics in developing novel transparent classification method
- Experimental evaluation of proposed algorithms
- Designing and implementing a programming library

¹Omer Sagi and Lior Rokach. "Explainable decision forest: Transforming a decision forest into an interpretable tree". en. In: *Information Fusion* (2020).

Examples of not interpretable models

Neural networks

- Ensemble models (Random forest)
- Non-linear Support vector machines

Examples of interpretable models

- Decision trees
- Rules lists
- ► Linear regression
- Nearest neighbors model

XAI taxonomies

- ► Intrinsic/Post-hoc
- ► Global/Local
- Model agnostic/Model specific

XAI taxonomies

- ► Intrinsic/Post-hoc
- ► Global/Local
- Model agnostic/Model specific

Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

- **4** Optimal Centroids
- **6** Quad Split
- 6 Cross-method comparison
- **7** Summary

Experimental evaluation setup

- 1. Fixed number of binary datasets (16)
- 2. Fixed number of complexity metrics (22) (from Lorena's paper²)
- 3. 5x2 cross-validation
- 4. Statistical analysis with the sign test
- 5. Base classifiers were pretrained on hold-off datasets to find optimal parameters

²Ana C. Lorena et al. "How Complex Is Your Classification Problem? A Survey on Measuring Classification Complexity". In: *ACM Comput. Surv.* (2019).

Used datasets

name	#instances	#features	#integer	#real	#nominal
appendicitis	106	7	0	7	0
australian	690	14	5	3	6
bands	365	19	6	13	0
breast	277	9	0	0	9
bupa	345	6	5	1	0
crx	653	15	3	3	9
haberman	306	3	3	0	0
heart	270	13	12	1	0
hepatitis	80	19	17	2	0
housevotes	232	16	0	0	16
ionosphere	351	33	1	32	0
mammographic	830	5	5	0	0
monk-2	432	6	6	0	0
saheart	462	9	3	5	1
tic-tac-toe	958	9	0	0	9
wisconsin	683	9	9	0	0

Complexity metrics

metric	low	medium	high
F1	< 0.49	0.49 — 0.757	> 0.757
F2	< 0.215	0.215 - 0.659	> 0.659
F3	< 0.824	0.824 - 0.948	> 0.948
F4	< 0.629	0.629 - 0.896	> 0.896
F1V	< 0.145	0.145 - 0.417	> 0.417
C1	< 0.009	0.009 - 0.069	> 0.069
C2	< 0.024	0.024 - 0.172	> 0.172
L1	< 0.179	0.179 - 0.266	> 0.266
L2	< 0.194	0.194 - 0.297	> 0.297
L3	< 0.14	0.14 - 0.301	> 0.301
N1	< 0.111	0.111 - 0.195	> 0.195
N2	< 0.493	0.493 - 0.54	> 0.54
N3	< 0.219	0.219 - 0.377	> 0.377
N4	< 0.155	0.155 - 0.25	> 0.25
T1	< 0.588	0.588 - 0.822	> 0.822
T2	< 0.035	0.035 - 0.096	> 0.096
Т3	< 0.022	0.022 - 0.043	> 0.043
Τ4	< 0.421	0.421 - 0.667	> 0.667
clsCoef	< 0.081	0.081 - 0.368	> 0.368
hubs	< 0.505	0.505 - 0.738	> 0.738
density	< 0.718	0.718 - 0.879	> 0.879
LSC	< 0.96	0.96 - 0.986	> 0.986
size	< 306.0	306 - 462.0	> 462
features_count	< 9.0	9 - 14	> 14

Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

6 Quad Split

6 Cross-method comparison

7 Summary

NOTE competence areas visualization

- $1. \ \mbox{Extract trees from random forest}$
- 2. Extract rules from the trees
- 3. Check each rule pair for overlapping
- 4. Model rules as a graph, where each node is rule and edge (relation) means that rules do not overlap with each other
- 5. Using evaluation metric (e.g., accuracy) and cross-validation find best performing clique (and set of rules)
- 6. Build final model by training decision tree in boundaries set by each rule + one default tree

- $1. \ \mbox{Extract trees from random forest}$
- 2. Extract rules from the trees
- 3. Check each rule pair for overlapping
- 4. Model rules as a graph, where each node is rule and edge (relation) means that rules do not overlap with each other
- 5. Using evaluation metric (e.g., accuracy) and cross-validation find best performing clique (and set of rules)
- 6. Build final model by training decision tree in boundaries set by each rule + one default tree

- 1. Extract trees from random forest
- 2. Extract rules from the trees
- 3. Check each rule pair for overlapping
- 4. Model rules as a graph, where each node is rule and edge (relation) means that rules do not overlap with each other
- 5. Using evaluation metric (e.g., accuracy) and cross-validation find best performing clique (and set of rules)
- 6. Build final model by training decision tree in boundaries set by each rule + one default tree

NOTE rules distillation visualization

- 1. Extract trees from random forest
- 2. Extract rules from the trees
- 3. Check each rule pair for overlapping
- 4. Model rules as a graph, where each node is rule and edge (relation) means that rules do not overlap with each other
- 5. Using evaluation metric (e.g., accuracy) and cross-validation find best performing clique (and set of rules)
- Build final model by training decision tree in boundaries set by each rule
 + one default tree

- 1. Extract trees from random forest
- 2. Extract rules from the trees
- 3. Check each rule pair for overlapping
- 4. Model rules as a graph, where each node is rule and edge (relation) means that rules do not overlap with each other
- 5. Using evaluation metric (e.g., accuracy) and cross-validation find best performing clique (and set of rules)
- 6. Build final model by training decision tree in boundaries set by each rule + one default tree

NOTE competence areas visualization

NOTE experiments - tested parameters

- Random Forest sizes of 3, 5, 7
- ▶ Number of subspaces (clique size) of 3, 5, 7
- Decision Tree as base classifier

Windaw University of Science and Technology

NOTE - overall performance across complexities

NOTE - dependencies on the subspace number

Wrocław University of Science and Technology

NOTE - dependencies on the evaluation metric

NOTE results - different forest size

NOTE results - different forest size (test)

NOTE - summary

- NOTE creates an explainable tree ensemble that can be competitive to explain Random Forest
- ▶ It shows better performance when presented with more complex data
- There is space for finding better clique evaluation metrics, as shown by the test data

Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

6 Quad Split

6 Cross-method comparison

7 Summary

Optimal Centroids algorithm

- Use Genetic Algorithm to find the best position of centroids.
 In each iteration: Build and evaluate a Decision Tree using samples that fall into a given centroid area
- Build final model after optimization procedure ceases

Optimal Centroid learning procedure

DT vs OC decision boundaries

OC results - overall performance across complexities

OC results - overall performance for different number of subspaces

Two "XAI" variations

- For each subspace select a tree from within the explained Random Forest using the additional GA feature
- Pick the best tree from Random Forest for each centroid

OC XAI variations - overall performance

better equal worse

better equal worse

Optimal Centroids - summary

- Optimal Centroid uses Genetic Algorithm for finding optimal distribution of decision spaces for tree ensemble
- It performs best for datasets of low and high complexity
- Both XAI variations perform roughly the same
- ▶ The more centroids are picked, the worse the accuracy

Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

5 Quad Split

6 Cross-method comparison

7 Summary

Quad split learning procedure

Quad split learning results - different base classifiers

Quad split results

Quad split results - different complexity metrics

Complexity measure

Quad Split - two "XAI" variations

- Pick the best tree from the tree ensemble
- ► Train on RF output data

Quad Split - two "XAI" variations

QS with picking trees - overall performance

QS with training on RF's output - overall performance

Quad Split summary

- Quad Split algorithm can act as a viable solution for explaining Random Forest by picking the best trees from the ensemble
- It behaves best with low-complexity datasets
- Quad Split is an inherently transparent model

Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

6 Quad Split

6 Cross-method comparison

7 Summary

Models compared

- 1. Optimal Centroids with tree selection (additional GA individual parameter)
- 2. Quad Split with picking the best tree from RF
- 3. NOTE

Measuring model's complexity

model	complexity formula
Quad Split	$\sum^{trees} \#$ of leaves $+ \#$ of rules
Optimal Centroids	$\sum^{\text{trees}} \#$ of leaves $+ \#$ of centroids
NOTE	$\sum^{trees} \#$ of leaves $+ \#$ of rules

Comparison of models' complexity

Performance against explained RF

Outline

1 Introduction

2 Methodology

3 Non Overlapping Tree Ensemble

4 Optimal Centroids

6 Quad Split

6 Cross-method comparison

Summary

Hypothesis

For a given classification task, it is possible to build such a transparent or explainable model whose quality is not worse than a similarly applied black-box model

Objectives

- Development of a novel ensemble "glass-box" model extraction method
- Development of novel transparent, "glass-box" models
- Utilization of data complexity metrics in developing novel transparent classification method
- Experimental evaluation of proposed algorithms
- Designing and implementing a programming library
 - https://github.com/bgulowaty/non-overlapping-rules-ensemble
 - https://github.com/bgulowaty/optimal-centroids
 - https://github.com/bgulowaty/quad-split
 - https://github.com/bgulowaty/ml-utils

1. Evaluate the stability of models

- 2. Evaluate the performance of proposed models against other tree ensemble methods, such as XGBoost CatBoost
- 3. Validate models' performance against other XAI methods, such as EBM, LORE, EXPLAN
- 4. Run experiments with human end-users/consumers of explanations

- 1. Evaluate the stability of models
- 2. Evaluate the performance of proposed models against other tree ensemble methods, such as XGBoost CatBoost
- 3. Validate models' performance against other XAI methods, such as EBM, LORE, EXPLAN
- 4. Run experiments with human end-users/consumers of explanations

- 1. Evaluate the stability of models
- 2. Evaluate the performance of proposed models against other tree ensemble methods, such as XGBoost CatBoost
- 3. Validate models' performance against other XAI methods, such as EBM, LORE, EXPLAN
- 4. Run experiments with human end-users/consumers of explanations

- 1. Evaluate the stability of models
- 2. Evaluate the performance of proposed models against other tree ensemble methods, such as XGBoost CatBoost
- 3. Validate models' performance against other XAI methods, such as EBM, LORE, EXPLAN
- 4. Run experiments with human end-users/consumers of explanations

Building transparent classification models

dr inż. Bogdan Gulowaty

Artificial Intelligence in Research and Applications Seminar (AIRA)

29.05.2025

Publications

- Bogdan Gulowaty, Michał Woźniak, Extracting interpretable decision tree ensemble from random forest, International Joint Conference on Neural Networks IJCNN 2021 (CORE rank A, 140 p. MNiSzW)
- Bogdan Gulowaty, Michał Woźniak, Search-based framework for transparent non-overlapping ensemble models, International Joint Conference on Neural Networks IJCNN 2022 (CORE rank A, 140 p. MNiSzW)