
ProtoTSNet: Interpretable Time
Series

Classification With Prototypical
Parts

Bartłomiej Małkus
Doctoral School of Exact and Natural Sciences
Technical Computer Science

GEIST
Research

Group

Principle of operation of ProtoPNet

This Looks Like That: Deep Learning for Interpretable Image Recognition, Chen et al. (2021)

The high-level idea of ProtoPNet is that the network learns some specific parts of images from the
training set (prototypical parts), and it makes decisions based on the similarity of new input images
to these existing prototypes.

Test image

Prototypical
parts

Prototype
source images

Activations

Principle of operation of ProtoPNet

This Looks Like That: Deep Learning for Interpretable Image Recognition, Chen et al. (2021)

Challenges

Architecture specific:
- different epochs kinds, run in cycles
- multiple hyperparameters – regularization, protypes size, number of epochs

of each kind

Challenges

Architecture specific:
- different epochs kinds, run in cycles
- multiple hyperparameters – regularization, protypes size, number of epochs

of each kind

Time series specific:
- features may be not equally important
- for images, we can utilize pretrained encoders, like ResNet, DenseNet, VGG

there are no such encoders for time series data
- prototype visualization is more challenging

Challenges

Architecture specific:
- different epochs kinds, run in cycles
- multiple hyperparameters – regularization, protypes size, number of epochs

of each kind

Time series specific:
- features may be not equally important
- for images, we can utilize pretrained encoders, like ImageNet, DenseNet, VGG

there are no such encoders for time series data
- prototype visualization is more challenging

…

Existing works

- word extraction and bag-of-patters approaches
- mostly non-explainable
- weak scalability

- prototypical approaches
- some are non-explainable
- prototypes cover whole input sequences

- lots of methods are limited to univariate data
- multivariate explainable approaches provide post-hoc explainability

Principle of operation of ProtoTSNet

resembles

resembles

Test instance

Prototypical
parts

Prototype source
instances

input

time
features

Our solution

The centerpiece of our solution is modified convolutional encoder

input
feature subsetting

time
features

Our solution
We introduce random masks for input features (we’re subsetting them)

input
small Conv1D encodersfeature subsetting singleton latent features

time
features

Our solution
We pass each subset to a small convolutional encoder – each encoder is producing single latent feature

input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder

time
features

Our solution
Such encoder is pretrained as a part of regular autoencoder prior to the main training process

input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder

time
features

Conv1D + ReLU1x1
pretrainedas a part of autoencoder

Our solution
We introduce single convolution layer with 1x1 filters – this allows for feature importance calculation

input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder

time
features

Conv1D + ReLU1x1
pretrainedas a part of autoencoder

prototypes

Our solution
Output encoded in such a way is passed to the prototype layer

activations+max pool(per prototype)
Dense

Our solution
In the last step, activations are passed to the dense layer which performs the classification

input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder

time
features

Conv1D + ReLU1x1
pretrainedas a part of autoencoder

prototypes

Training
process

WARM
JOINT PUSH LAST LAYEREncoder pre-training

LAST LAYER epochsWARM epochsJOINT epochsEncoder pre-training

activations+max pool(per prototype)
Dense

input
small Conv1D encodersfeature subsetting singleton latent features

Conv1D + ReLU1x1
prototypes

time
features

Training process

LAST LAYER epochsWARM epochsJOINT epochsEncoder pre-training

activations+max pool(per prototype)
Dense

input
small Conv1D encodersfeature subsetting singleton latent features

Conv1D + ReLU1x1
prototypes

time
features

Synthetic dataset evaluation

Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Table of ranks based on accuracy of each method for each dataset
divided into black-box and explainable groups

Explainable
Black-Box

ante hoc post hoc

ProtoTSNet ProtoTSNet
(regular encoder) MR-PETSC XCM MTEX-CNN TapNet ROCKET

Avg. Rank 3,13 4,03 4,16 5,17 4,83 3,87 1,58
Wins/Ties 1 0 2 0 2 5 21
Avg. Rank 1,97 2,77 2,84 3,63 3,33
Wins/Ties 13 5 8 2 3

Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Critical difference diagram of tested methods
(methods connected by bars statistical differences from each other)

*Explainable Methods

Real-world tests – Libras dataset
Hand sign language dataset

Prototypical parts for example gestures shown, along with instances classified based on similarity to them

Corresponding
hand signs

Real-world tests – Libras dataset

Prototypes transformed and shown as 2D hand gestures along with prototypical parts (in blue)

DeepProbLog as ProtoTSNet
complement

Prolog
likes(john, susie). /* John likes Susie */

likes(X, susie). /* Everyone likes Susie */

likes(john, Y). /* John likes everybody */

likes(john, Y), likes(Y, john). /* John likes everybody and everybody likes John */

likes(john, susie); likes(john, mary). /* John likes Susie or John likes Mary */

not(likes(john, pizza)). /* John does not like pizza */

likes(john, susie) :- likes(john, mary). /* John likes Susie if John likes Mary. */

friends(X,Y) :- likes(X,Y),likes(Y,X). /* X and Y are friends if they like each other */

hates(X,Y) :- not(likes(X,Y)). /* X hates Y if X does not like Y. */

enemies(X,Y) :- not(likes(X,Y)),not(likes(Y,X)). /* X and Y are enemies if they don't like each other */

ProbLog
person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.

0.8::alarm :- burglary, \+earthquake.

0.1::alarm :- \+burglary, earthquake.

0.8::calls(X) :- alarm, person(X).

0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).

evidence(calls(mary),true).

query(burglary). % 0.98193926

query(earthquake). % 0.22685136

ProbLog DeepProbLog
nn(mnist_net,[X],Y,[0,1,2,3,4,5,6,7,8,9])::digit(X,Y).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), Z is X2+Y2.

?-

person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.

0.8::alarm :- burglary, \+earthquake.

0.1::alarm :- \+burglary, earthquake.

0.8::calls(X) :- alarm, person(X).

0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).

evidence(calls(mary),true).

query(burglary). % 0.98193926

query(earthquake). % 0.22685136

ProtoTSNet + DeepProbLog

DeepProbLog
logic

input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder

time
features

Conv1D + ReLU1x1
pretrainedas a part of autoencoder

prototypes activations+max pool(per prototype)

ProtoTSNet + DeepProbLog
nn(ptsnet, [TS, P], H, [0])::has_proto(TS, P, H).

is_class(TS, c0) :- class(c0), has_proto(TS, p0).

is_class(TS, c1) :- class(c1), has_proto(TS, p1).

class(c0).

class(c1).

query(is_class(ts0, c0)).

query(is_class(ts1, c1)).

nn(ptsnet, [TS, P], H, [0, 1])::has_proto(TS, P, H).

t(_)::connected(p0, c0).

t(_)::connected(p1, c1).

is_class(TS, c0) :- class(c0), has_proto(TS, p0), connected(p0, c0).

is_class(TS, c1) :- class(c1), has_proto(TS, p1), connected(p1, c1).

class(c0).

class(c1).

query(is_class(ts0, c0)).

query(is_class(ts1, c1)).

query(is_class(ts2, c1)).

Thank you for your attention

	ProtoTSNet: Interpretable Time Series Classification With Proto
	Principle of operation of ProtoPNet
	Principle of operation of ProtoPNet (2)
	Challenges
	Challenges (2)
	Challenges (3)
	Existing works
	Principle of operation of ProtoTSNet
	Our solution
	Our solution (2)
	Our solution (3)
	Our solution (4)
	Our solution (5)
	Our solution (6)
	Our solution (7)
	Training process
	Training process (2)
	Synthetic dataset evaluation
	Real-world tests
	Real-world tests (2)
	Real-world tests – Libras dataset
	Real-world tests – Libras dataset (2)
	DeepProbLog as ProtoTSNet complement
	Prolog
	ProbLog
	ProbLog (2)
	ProtoTSNet + DeepProbLog
	ProtoTSNet + DeepProbLog (2)
	Thank you for your attention

