ProtoTSNet: Interpretable Time

Series
Classification With Prototypical
Parts
Bartlomiej Matk
ch:or:Irzlﬁ(J)ol o?‘ ExL:\it and Natural Sciences Res(églri-tlw- @

Technical Computer Science Group

Principle of operation of ProtoPNet

The high-level idea of ProtoPNet is that the network learns some specific parts of images from the
training set (prototypical parts), and it makes decisions based on the similarity of new input images
to these existing prototypes.

looks like
- 5 f 1‘
) .

looks like | =

looks like

Prototype Activations
source images

Prototypical
parts

This Looks Like That: Deep Learning for Interpretable Image Recognition, Chen et al. (2021)

Principle of operation of ProtoPNet

max pool
p 3.954 \\ 5.030 | Black footed albatross

/3 Indigo bunting
KT
A’Yv‘ Cardinal
X
""— Clay colored sparrow

o

[]

A\ :
2.617 5.662 | Common yellowthroat

Similarity score

DN b J
A A e

Convolutional layers f Prototype layer gy Fully connected layer /2 Output logits

This Looks Like That: Deep Learning for Interpretable Image Recognition, Chen et al. (2021)

Challenges

Architecture specific:
- different epochs kinds, run in cycles
- multiple hyperparameters - regularization, protypes size, number of epochs

of each kind

Challenges

Architecture specific:
- different epochs kinds, run in cycles

- multiple hyperparameters - regularization, protypes size, number of epochs
of each kind

Time series specific:

- features may be not equally important

- for images, we can utilize pretrained encoders, like ResNet, DenseNet, VGG
there are no such encoders for time series data

- prototype visualization is more challenging

Challenges

Architecture specific:
- different epochs kinds, run in cycles

- multiple hyperparameters - regularization, protypes size, number of epochs
of each kind

Time series specific:
- features may be not equally important

- for images, we can utilize pretrained encoders, like ImageNet, DenseNet, VGG
there are no such encoders for time series data

- prototype visualization is more challenging

Existing works

- word extraction and bag-of-patters approaches
- mostly non-explainable
- weak scalability
- prototypical approaches
- some are non-explainable
- prototypes cover whole input sequences
- lots of methods are limited to univariate data
- multivariate explainable approaches provide post-hoc explainability

Principle of operation of ProtoTSNet

0.8F 0.8F
Y/ A A TNV Y
0.8 0.4 0.4+
resembles
0.2 o 0.2}
0.6 "
0.0 0.0F
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
0.4r \/
0.2+

0.0r

0 5 10 15 20 25 30 35 40

osl osl
TNARY
04 \/ resembles M 04W
0.2 > 02l
o
I R I o

0.0
Test instance L

Prototypical Prototype source
parts instances

Our solution

The centerpiece of our solution is modified convolutional encoder

,fiatures
time __Ij:'—

Our solution

We introduce random masks for input features (we're subsetting them)

|
:
|
features :
'W' |
time __Ij:'—
input \

feature
subsetting

Our solution

We pass each subset to a small convolutional encoder - each encoder is producing single latent feature

i | [1 1 -
I
1 — = —
features B S O
time __l:ll - _:II—"—'I_-,__I__L
e
i
o — ! &
T
1
| - || || o
=
input {
¥
1 1
1 1
X
|
feature small Conv1D singleton

subsetting encoders latent features

Our solution

Such encoder is pretrained as a part of regular autoencoder prior to the main training process

ﬁtures /
time

|
feature small Conv1D singleton

subsetting encoders latent features pretrained

as a part of

autoencoder

Our solution

We introduce single convolution layer with 1x1 filters - this allows for feature importance calculation

.| bl »
1 e = S
features T e - B,
1
time __l:ll _:II—"—'I_-,__I__L
ol IR Y [N—
I : 27
- » : I :
) : , 1+
|
- |
i |
input i : ConvlD +
k ReLU
¥ 1x1
! |
feature small Conv1D singleton
subsetting encoders latent features pretrained

as a part of
autoencoder

Our solution

Output encoded in such a way is passed to the prototype layer

ﬁfcures /
time

input \ IE ConvlD +
: ReLU
. 1x1
I
feature small Conv1D singleton prototypes
subsetting encoders latent features pretrained

as a part of
autoencoder

Our solution

features

time __I:I:l—

0

feature
subsetting

small ConvlD
encoders

singleton
latent features

/ ConvlD +

ReLLU
1x1

pretrained

as a part of
autoencoder

AN
o g
<_

v RRE

prototypes

In the last step, activations are passed to the dense layer which performs the classification

e

activations

+
max pool

(per prototype)

Dense

Training
process

features

time

r

feature
subsetting

JOINT epochs

Encoder pre-training

W

.....

M

WARM epochs

small
ConvlD

encoders

singleton
latent
features

ConvlD +
ReLU
1x1

prototypes

Encoder pre-training —» WAR — JOIN — PUS ——

M

T

//—\

activations
+
max pool

(per prototype)

Dense

Training process

1

1

1

features :

/ |
time 1|"|--.,
1 11
1 11
—> 1 11
I 11
a1l
“ed

—
input
feature
subsetting

JOINT epochs

Encoder pre-training

small
ConvlD
encoders

singleton
latent
features

WARM epochs

v 7
r'
<
ConvlD + <
ReLlU
1x1

prototypes

activations
+

max pool

(per prototype)

Dense

Overall loss

1.4 4

1.2 4

1.0 1

0.8 1

0.6 1

0.4 4

0.2 1

0.0

—— train loss
—— test loss
WARM
JOINT
LAST_LAYER
=== Proto projection

50 100 150

|
]
200 250 300 350

Epoch

Synthetic dataset evaluation

feature 0 feature 1
(significant) (significant)

=
T

class 1 class 0
prototype prototype
1 1

Feature Importance

feature 0

feature 1

feature 2

|
=i
S
L
=

class 2
prototype
[=] =
: - -
J
L < |

class 3
prototype
LA o .
T T }
1

i
5

}
I

0.0 0.5 1.0

(=]

25 50 75 0 25 50 75 0 25 50 75

prototypical parts

Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Table of ranks based on accuracy of each method for each dataset
divided into black-box and explainable groups

Explainable
Black-Box
ante hoc post hoc
ProtoTSNet
ProtoTSNet (regular encoder) MR-PETSC XCM MTEX-CNN TapNet ROCKET
Avg. Rank 3,13 4,03 4,16 5,17 4,83 3,87 1,58
Wins/Ties 1 0 2 0 2 5 21
Avg. Rank 1,97 2,77 2,84 3,63 3,33
Wins/Ties 13 5 8 2 3

Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Critical difference diagram of tested methods
(methods connected by bars statistical differences from each other)

CD
T
1 2 3 4 5 ¥ !
| 1 1 1 1]
1
ROCKET — ACM
ProtoTSNet MTEX-CNN
TapNet MR-PETSC
ProtoTSNet (R) .
| *Explainable Methods

0.8

0.6

0.4

0.2

0.0r

0.8

0.6

0.41

0.2F

0.0

Real-world tests - Libras dataset

Hand sign language dataset

Prototypical parts for example gestures shown, along with instances classified based on similarity to them

NAVAVAY

N\

VAN AV

RMAVAVAY

AN

—_

N

N\ O N TR T AU
_/-\ | | | \ L \
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 .
Prototypes Corresponding

—— X coordinate

Y coordinate

prototypical parts

hand signs

1.0¢
0.8
0.6
0.4}
0.2

0.0

1.0p
0.8r
0.6
0.4r
0.2F

0.%.

Real-world tests - Libras dataset

¢

Prototypes transformed and shown as 2D hand gestures along with prototypical parts (in blue)

N

7

V%

C

i

UV

L

TS I (p .I I prag
4 C/ J
0.5 1.0 0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 05 1.0 0.0 05

1.0

DeepProblLog as ProtoTSNet
complement

Prolog

likes(john, susie).
likes (X, susie).
likes(john, Y).
likes(john, Y), likes(Y, john).

likes(john, susie); likes(john, mary).

not(likes(john, pizza)).

likes(john, susie)
friends(X,Y) :- likes(X,Y),likes(Y,X).
hates(X,Y) :- not(likes(X,Y)).

enemies(X,Y)

:- likes(john, mary).

:- not(likes(X,Y)),not(likes(Y,X)).

o
/4
/*
/4

/*
/*

/*

/*
/*

John likes Susie */

Everyone likes Susie */

John likes everybody */

John likes everybody and everybody likes John */

John likes Susie or John likes Mary */

John does not like pizza */

John likes Susie if John likes Mary. */
X and Y are friends if they like each other */
X hates Y if X does not like Y. */

X and Y are enemies if they don't like each other */

ProbLog

person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.
0.8::alarm :- burglary, \+earthquake.
0.1::alarm :- \+burglary, earthquake.
0.8::calls(X) :- alarm, person(X).

0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).
evidence(calls(mary),true).
query(burglary). % 0.98193926
query(earthquake). % 0.22685136

ProblLog

person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.
0.8::alarm :- burglary, \+earthquake.
0.1::alarm :- \+burglary, earthquake.
0.8::calls(X) :- alarm, person(X).
0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).
evidence(calls(mary),true).
query(burglary). % 0.98193926
query(earthquake). % 0.22685136

DeepProblLog

nn(mnist net,[X],Y,[0,1,2,3,4,5,6,7,8,9])::digit(X,Y).
nn(Maigic, g, [0, - - . ,9]) :: digit(Jg, 0);...;digit(|g, 9).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), Z is X2+Y2.
?- addition(E], &, 8)

ProtoTSNet + DeepProblLog

features

DeepProblLog
logic

e |

————————

L

]
1
1
[
[
I
I
v

/ ConvlD + <

e e |
time 1 1 :I_-I_-I_-I_-I_-I_-L
| I I . >
e o~
N ',//,,

P
input : i
! ReLU
I 1x1
! 1 >
|
activations
feature small Conv1D singleton prototypes +
subsetting encoders latent features pretrained max pool
as a part of (per prototype)

autoencoder

ProtoTSNet + DeepProblLog

nn(ptsnet, [TS, P],

is class(TS, c0) :-

is class(TS, cl) :-

class(cO).

class(cl).

query(is class(tso0,

query(is class(tsl,

H, [0])::has proto(TS, P, H).

class(cO), has proto(TS, po).
class(cl), has proto(TS, pl).

c0)).
cl)).

nn(ptsnet, [TS, P],

t()::connected(poO,
t()::connected(pl,

is class(TS, c0O) :-
is class (TS, cl) :-

class(cO).

class(cl).

query(is class(tsO,
query(is class(tsl,

query(is class(ts2,

H, [0, 1])::has proto(TS, P, H).

c0).
cl).

class(c0O), has proto(TS, p@), connected(p0O, c0).
class(cl), has proto(TS, pl), connected(pl, cl).

c0)).
cl)).
cl)).

Thank you for your attention

	ProtoTSNet: Interpretable Time Series Classification With Proto
	Principle of operation of ProtoPNet
	Principle of operation of ProtoPNet (2)
	Challenges
	Challenges (2)
	Challenges (3)
	Existing works
	Principle of operation of ProtoTSNet
	Our solution
	Our solution (2)
	Our solution (3)
	Our solution (4)
	Our solution (5)
	Our solution (6)
	Our solution (7)
	Training process
	Training process (2)
	Synthetic dataset evaluation
	Real-world tests
	Real-world tests (2)
	Real-world tests – Libras dataset
	Real-world tests – Libras dataset (2)
	DeepProbLog as ProtoTSNet complement
	Prolog
	ProbLog
	ProbLog (2)
	ProtoTSNet + DeepProbLog
	ProtoTSNet + DeepProbLog (2)
	Thank you for your attention

