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Principle of operation of ProtoPNet

This Looks Like That: Deep Learning for Interpretable Image Recognition, Chen et al. (2021)

The high-level idea of ProtoPNet is that the network learns some specific parts of images from the 
training set (prototypical parts), and it makes decisions based on the similarity of new input images 
to these existing prototypes.
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This Looks Like That: Deep Learning for Interpretable Image Recognition, Chen et al. (2021)



Challenges

Architecture specific:
- different epochs kinds, run in cycles
- multiple hyperparameters – regularization, protypes size, number of epochs 

of each kind
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Time series specific:
- features may be not equally important
- for images, we can utilize pretrained encoders, like ImageNet, DenseNet, VGG

there are no such encoders for time series data
- prototype visualization is more challenging
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Existing works

- word extraction and bag-of-patters approaches
- mostly non-explainable
- weak scalability

- prototypical approaches
- some are non-explainable
- prototypes cover whole input sequences

- lots of methods are limited to univariate data
- multivariate explainable approaches provide post-hoc explainability



Principle of operation of ProtoTSNet
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Our solution

The centerpiece of our solution is modified convolutional encoder



input
feature subsetting

time
features

Our solution
We introduce random masks for input features (we’re subsetting them)



input
small Conv1D encodersfeature subsetting singleton latent features

time
features

Our solution
We pass each subset to a small convolutional encoder – each encoder is producing single latent feature



input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder

time
features

Our solution
Such encoder is pretrained as a part of regular autoencoder prior to the main training process



input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder
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Conv1D + ReLU1x1
pretrainedas a part of autoencoder

Our solution
We introduce single convolution layer with 1x1 filters – this allows for feature importance calculation



input
small Conv1D encodersfeature subsetting singleton latent features pretrainedas a part of autoencoder
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Conv1D + ReLU1x1
pretrainedas a part of autoencoder

prototypes

Our solution
Output encoded in such a way is passed to the prototype layer 



activations+max pool(per prototype)
Dense

Our solution
In the last step, activations are passed to the dense layer which performs the classification
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Training 
process
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activations+max pool(per prototype)
Dense
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Synthetic dataset evaluation



Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Table of ranks based on accuracy of each method for each dataset
divided into black-box and explainable groups

Explainable
Black-Box

ante hoc post hoc

ProtoTSNet ProtoTSNet
(regular encoder) MR-PETSC XCM MTEX-CNN TapNet ROCKET

Avg. Rank 3,13 4,03 4,16 5,17 4,83 3,87 1,58
Wins/Ties 1 0 2 0 2 5 21
Avg. Rank 1,97 2,77 2,84 3,63 3,33
Wins/Ties 13 5 8 2 3



Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Critical difference diagram of tested methods
(methods connected by bars statistical differences from each other)

*Explainable Methods



Real-world tests – Libras dataset
Hand sign language dataset

Prototypical parts for example gestures shown, along with instances classified based on similarity to them

Corresponding 
hand signs



Real-world tests – Libras dataset

Prototypes transformed and shown as 2D hand gestures along with prototypical parts (in blue)



DeepProbLog as ProtoTSNet 
complement



Prolog
likes(john, susie).                               /* John likes Susie */

likes(X, susie).                                  /* Everyone likes Susie */

likes(john, Y).                                   /* John likes everybody */

likes(john, Y), likes(Y, john).                   /* John likes everybody and everybody likes John */

likes(john, susie); likes(john, mary).            /* John likes Susie or John likes Mary */

not(likes(john, pizza)).                          /* John does not like pizza */

likes(john, susie) :- likes(john, mary).          /* John likes Susie if John likes Mary. */

friends(X,Y) :- likes(X,Y),likes(Y,X).            /* X and Y are friends if they like each other */

hates(X,Y) :- not(likes(X,Y)).                    /* X hates Y if X does not like Y. */

enemies(X,Y) :- not(likes(X,Y)),not(likes(Y,X)).  /* X and Y are enemies if they don't like each other */



ProbLog
person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.

0.8::alarm :- burglary, \+earthquake.

0.1::alarm :- \+burglary, earthquake.

0.8::calls(X) :- alarm, person(X).

0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).

evidence(calls(mary),true).

query(burglary).    % 0.98193926

query(earthquake).  % 0.22685136



ProbLog DeepProbLog
nn(mnist_net,[X],Y,[0,1,2,3,4,5,6,7,8,9])::digit(X,Y).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), Z is X2+Y2.

?-

person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.

0.8::alarm :- burglary, \+earthquake.

0.1::alarm :- \+burglary, earthquake.

0.8::calls(X) :- alarm, person(X).

0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).

evidence(calls(mary),true).

query(burglary).    % 0.98193926

query(earthquake).  % 0.22685136



ProtoTSNet + DeepProbLog

DeepProbLog 
logic
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ProtoTSNet + DeepProbLog
nn(ptsnet, [TS, P], H, [0])::has_proto(TS, P, H).

is_class(TS, c0) :- class(c0), has_proto(TS, p0).

is_class(TS, c1) :- class(c1), has_proto(TS, p1).

class(c0).

class(c1).

query(is_class(ts0, c0)).

query(is_class(ts1, c1)).

nn(ptsnet, [TS, P], H, [0, 1])::has_proto(TS, P, H).

t(_)::connected(p0, c0).

t(_)::connected(p1, c1).

is_class(TS, c0) :- class(c0), has_proto(TS, p0), connected(p0, c0).

is_class(TS, c1) :- class(c1), has_proto(TS, p1), connected(p1, c1).

class(c0).

class(c1).

query(is_class(ts0, c0)).

query(is_class(ts1, c1)).

query(is_class(ts2, c1)).



Thank you for your attention
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