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Principle of operation of ProtoPNet

The high-level idea of ProtoPNet is that the network learns some specific parts of images from the
training set (prototypical parts), and it makes decisions based on the similarity of new input images
to these existing prototypes.
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Principle of operation of ProtoPNet
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Challenges

Architecture specific:
- different epochs kinds, run in cycles
- multiple hyperparameters - regularization, protypes size, number of epochs

of each kind
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Existing works

- word extraction and bag-of-patters approaches
- mostly non-explainable
- weak scalability
- prototypical approaches
- some are non-explainable
- prototypes cover whole input sequences
- lots of methods are limited to univariate data
- multivariate explainable approaches provide post-hoc explainability



Principle of operation of ProtoTSNet
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Our solution

The centerpiece of our solution is modified convolutional encoder
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Our solution

We introduce random masks for input features (we're subsetting them)
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Our solution

We pass each subset to a small convolutional encoder - each encoder is producing single latent feature
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Our solution

Such encoder is pretrained as a part of regular autoencoder prior to the main training process
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Our solution

We introduce single convolution layer with 1x1 filters - this allows for feature importance calculation
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Our solution

Output encoded in such a way is passed to the prototype layer
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Our solution
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In the last step, activations are passed to the dense layer which performs the classification
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Training
process
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Training process
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Synthetic dataset evaluation
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Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Table of ranks based on accuracy of each method for each dataset
divided into black-box and explainable groups

Explainable
Black-Box
ante hoc post hoc
ProtoTSNet
ProtoTSNet (regular encoder) MR-PETSC XCM MTEX-CNN TapNet ROCKET
Avg. Rank 3,13 4,03 4,16 5,17 4,83 3,87 1,58
Wins/Ties 1 0 2 0 2 5 21
Avg. Rank 1,97 2,77 2,84 3,63 3,33
Wins/Ties 13 5 8 2 3




Real-world tests

Tested on 30 UEA multivariate datasets (timeseriesclassification.com) along with 5 other methods

Critical difference diagram of tested methods
(methods connected by bars statistical differences from each other)
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Real-world tests - Libras dataset

Hand sign language dataset

Prototypical parts for example gestures shown, along with instances classified based on similarity to them

NAVAVAY

N\

VAN AV

RMAVAVAY

AN

—\_

N

N\ O N TR T AU
\_/-\ | | | \ L \
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 .
Prototypes Corresponding

—— X coordinate

Y coordinate

prototypical parts

hand signs



1.0¢
0.8
0.6
0.4}
0.2

0.0

1.0p
0.8r
0.6
0.4r
0.2F

0.%.

Real-world tests - Libras dataset

¢

Prototypes transformed and shown as 2D hand gestures along with prototypical parts (in blue)

N

7

V%

C

i

UV

L

TS I ( p .I I prag
4 C/ J
0.5 1.0 0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 05 1.0 0.0 05

1.0



DeepProblLog as ProtoTSNet
complement



Prolog

likes(john, susie).
likes (X, susie).
likes(john, Y).
likes(john, Y), likes(Y, john).

likes(john, susie); likes(john, mary).

not(likes(john, pizza)).

likes(john, susie)
friends(X,Y) :- likes(X,Y),likes(Y,X).
hates(X,Y) :- not(likes(X,Y)).

enemies(X,Y)

:- likes(john, mary).

:- not(likes(X,Y)),not(likes(Y,X)).

o
/4
/*
/4

/*
/*

/*

/*
/*

John likes Susie */

Everyone likes Susie */

John likes everybody */

John likes everybody and everybody likes John */

John likes Susie or John likes Mary */

John does not like pizza */

John likes Susie if John likes Mary. */
X and Y are friends if they like each other */
X hates Y if X does not like Y. */

X and Y are enemies if they don't like each other */



ProbLog

person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.
0.8::alarm :- burglary, \+earthquake.
0.1::alarm :- \+burglary, earthquake.
0.8::calls(X) :- alarm, person(X).

0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).
evidence(calls(mary),true).
query(burglary). % 0.98193926
query(earthquake). % 0.22685136



ProblLog

person(john).

person(mary).

0.7::burglary.

0.2::earthquake.

0.9::alarm :- burglary, earthquake.
0.8::alarm :- burglary, \+earthquake.
0.1::alarm :- \+burglary, earthquake.
0.8::calls(X) :- alarm, person(X).
0.1::calls(X) :- \+alarm, person(X).

evidence(calls(john),true).
evidence(calls(mary),true).
query(burglary). % 0.98193926
query(earthquake). % 0.22685136

DeepProblLog

nn(mnist net,[X],Y,[0,1,2,3,4,5,6,7,8,9])::digit(X,Y).
nn(Maigic, g, [0, - - . ,9]) :: digit(Jg, 0);...;digit(|g, 9).

addition(X,Y,Z) :- digit(X,X2), digit(Y,Y2), Z is X2+Y2.
?- addition(E], &, 8)



ProtoTSNet + DeepProblLog
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ProtoTSNet + DeepProblLog

nn(ptsnet, [TS, P],

is class(TS, c0) :-

is class(TS, cl) :-

class(cO).

class(cl).

query(is class(tso0,

query(is class(tsl,

H, [0])::has proto(TS, P, H).

class(cO), has proto(TS, po).
class(cl), has proto(TS, pl).

c0)).
cl)).

nn(ptsnet, [TS, P],

t( )::connected(poO,
t( )::connected(pl,

is class(TS, c0O) :-
is class (TS, cl) :-

class(cO).

class(cl).

query(is class(tsO,
query(is class(tsl,

query(is class(ts2,

H, [0, 1])::has proto(TS, P, H).

c0).
cl).

class(c0O), has proto(TS, p@), connected(p0O, c0).
class(cl), has proto(TS, pl), connected(pl, cl).

c0)).
cl)).
cl)).



Thank you for your attention
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