Introduction Aim of the stud

Method showcase

Method preliminari

Notation

Utility Function

Epidemic threshold

Optimisation problem

Model

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Hyperparameters

Experiments

Experiment setting Results Ablation study

Optimising network efficiency in the epidemic scenario With Deep Epidemic Efficiency Network (DEEN)

Magdalena Proszewska, Michał Bujak, Rafał Kucharski, Marek Śmieja, Jacek Tabor

Jagiellonian University, Kraków, Poland

18.04.2024

Introductio

Aim of the study

Method preliminarie

- Matatian
- Notation
- Epidemic threshold
- Optimisation problem

Model

- Overview
- Loss function
- Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment setting Results Ablation study

Aim of the study

- We aim to **reduce virus spreading** in a system represented by the **graph** structure while **maintaining the highest utility** levels. Deep Epidemic Efficiency Network (DEEN) model:
 - based on Graph Convolutional Neural Network with a novel loss function;
 - outputs a graph partition maximising utility at a set epidemic threshold;
 - applicable to real-life problems, validated against three scenarios;
 - capable of maintaining close to the original utility with a great reduction in the spreading potential.

Introduction Aim of the study Method showcase

Method preliminaries Notation Utility Function

Optimisation probler

Model

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines Hyperparamet

Experiments

Experiment setting Results Ablation study

Method showcase

Ride-pooling service with 150 travellers in NYC. Decomposition of graph into two clusters resulted in decrease of the performance 3% and increase in the epidemic threshold by 170%.

Notation

Introduction

Aim of the study Method showcase

Optimising network efficiency in the

epidemic scenario

Method preliminarie

Notation

Utility Function Epidemic threshold Optimisation problem

Mode

Overview

- Loss function
- Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment setting Results Ablation study

- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ system: weighted, directed graph;
- $\mathbf{A} = (\mathbf{A}_{ij}) \in \mathrm{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ adjacency matrix with weights;

•
$$\Delta = (\Delta_{ij}) \in \{0,1\}^{|\mathcal{V}| \times |\mathcal{V}|}$$
:

$$\Delta_{ij} = \begin{cases} 1, & \mathbf{A}_{ij} > 0\\ 0, & \mathbf{A}_{ij} \le 0. \end{cases}$$

- Decomposition \mathcal{H} for \mathcal{G} is a subgraph (i.e. $\mathcal{V}_{\mathcal{H}} = \mathcal{V}, \mathcal{E}_{\mathcal{H}} \subseteq \mathcal{E}$) consisting of disconnected components, i.e. $\mathcal{H} = \bigcup_{j \leq k} \mathcal{H}_j$ such that:
 - $\mathcal{V}_{\mathcal{H}} = \bigcup_{j \leq k} \mathcal{V}_{\mathcal{H}_j},$ • $\mathcal{E}_{\mathcal{H}} = \bigcup_{j \leq k} \mathcal{E}_{\mathcal{H}_j},$ • $\mathcal{V}_{\mathcal{H}_i} \cap \mathcal{V}_{\mathcal{H}_j} = \emptyset \text{ for } i \neq j.$

The set of decompositions of graph \mathcal{G} we denote as $\mathcal{D}(\mathcal{G})$.

Introduction

Aim of the study Method showcase

Method preliminarie

Notation

Utility Function

Epidemic threshold Optimisation problem

Mode

Overview

Loss function

Solving optimisation

Evaluation preliminarie:

Baselines

Hyperparameter

Experiments

Experiment setting Results Ablation study

Utility Function

Utility function **effectiveness of the** network **system** given by the graph. To ensure **applicability** of the algorithm to a variety of scenarios, we make the following assumption of the utility function:

- 1 may not have a closed-form analytical solution;
- 2 can be approximated with link weights;
- **3** is evaluated with an external (black-box) algorithm.

Following postulates by Dawar¹, we assume that the utility function $U: \mathcal{G} \to [0, +\infty)$ is **non-increasing** with respect to the **edge removal**, i.e.

$$\mathcal{H} \subseteq \mathcal{G} \implies U(\mathcal{H}) \le U(\mathcal{G}).$$

In particular,

$$\mathcal{H} \in \mathcal{D}(\mathcal{G}) \implies U(\mathcal{H}) \le U(\mathcal{G}).$$

¹Dawar, Bera, and Goyal, High-utility itemset mining for subadditive monotone utility functions

Introduction Aim of the study Method showcase

Method preliminari

Notation

Utility Functio

Epidemic threshold

Mode

- Overview
- Loss function
- Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment settin Results Ablation study

- S Susceptible
- I Infected
- γ Infection rate
- λ Recovery rate
- $oldsymbol{eta} = \gamma/\lambda$ Effective transmission rate

SIS model

We seek the critical effective transmission β_c rate where the epidemic is absorbed with time.

Introduction Aim of the stud

Method showcase

Method preliminar

Notation

Litility Eurotion

Epidemic threshold

Optimisation problem

Mode

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment settin Results Ablation study

Epidemic threshold

The critical effective transmission depends on the topology of the graph. Hence, we denote it as $ET(\mathcal{G})$.

To account for the different nodes' degrees, we apply the heterogeneous mean-field approach. Following results by Wang², for a connected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$,

$$ET(\mathcal{G}) = \frac{\sum_{v \in \mathcal{V}} \deg(v)}{\sum_{v \in \mathcal{V}} \deg(v)^2}.$$

The considered graph \mathcal{G} is not always connected. For the not connected graph \mathcal{G} , let $\mathcal{G} = \bigcup_{i \leq K} \mathcal{G}_i$, where $G_i = (\mathcal{V}_i, \mathcal{E}_i)$ is connected for $i \leq K$ and $\mathcal{G}_i \cap \overline{\mathcal{G}}_j = \emptyset$ for $i \neq j$. We denote $C(\mathcal{G}) = \{\mathcal{G}_i : i \leq K\}$. Then,

$$ET(\mathcal{G}) = \sum_{i \leq K} \frac{|\mathcal{V}_i|}{|\mathcal{V}|} ET(\mathcal{G}_i).$$

²Wang et al., "Unification of theoretical approaches for epidemic spreading on complex networks"

Optimisation problem

Aim of the study Method showcase

Method preliminaries Notation

- Utility Function
- Epidemic threshold
- Optimisation problem

Mode

- Overview
- Loss function
- Solving optimisation

Evaluation preliminaries

- Baselines
- Hyperparameter

Experiments

Experiment setting Results Ablation study

Input:

- weighted graph \mathcal{G} ;
- target epidemic threshold β_c ;
- utility function U (unknown to us).

Output:

Decomposition $\mathcal{H}_{\max} \in \mathcal{D}(\mathcal{G})$ defined as:

 $\max_{\mathcal{H}\in\mathcal{D}(\mathcal{G})} U(\mathcal{H}),$ s.t. $ET(\mathcal{H}) \ge \beta_c.$

(1)

Introduction

Aim of the study Method showcase

Method preliminari

Manata

Utility Function

Epidemic threshold Optimisation problem

Model

Overview

Loss function Solving optimisation

Evaluation preliminarie

Baselines

Experiments

Experiment setting Results Ablation study

Model architecture

The framework is realised using Graph Convolutional Neural Networks (GCNN) (Kipf and Welling³) with the output later defines by the softmax.

To include information about the node features itself, we modify the weight matrix before passing to the GCNN:

$$\widehat{\mathbf{A}} = \mathbf{A} + \delta \mathbf{I},$$

where $\delta \in \mathbb{R}_+$ (as suggested by Lampert⁴). The GCNN returns the assignment matrix $\mathbf{S} \in \mathbb{R}^{|\mathcal{V}| \times K}$:

 $\mathbf{S} = \operatorname{softmax}(\operatorname{GCNN}(\widehat{\mathbf{A}})),$

where $K \in \mathbb{N}_+$ is the resulting number of clusters. Unlike Kipf and Welling, we do experience over-smoothing, hence we do not apply Laplacian normalisation.

³Kipf and Welling, Semi-Supervised Classification with Graph Convolutional Networks

⁴Lampert and Scholtes, The Self-Loop Paradox: Investigating the Impact of Self-Loops on Graph Neural Networks

Loss function

Introduction Aim of the study Method showcase

Method preliminaries

- Notation
- Utility Function
- Epidemic threshold

Model

Overview

- Loss function Solving optimisation
- Evaluation preliminaries
- Baselines Hyperparameter

Experiments

Experiment setting Results Ablation study

We construct the loss function so to incorporate three factors:

- utility maximisation;
- epidemic threshold maximisation;
- prevent degenerate solutions.

Utility loss

Introduction Aim of the study

Optimising network efficiency in the

epidemic scenario

Method showcase

Method preliminarie

- Notation
- Lation Fromation
- Epidemic threshold
- Optimisation problem

Mode

Overview

Loss function

Solving optimisatio

Evaluation preliminarie

Baselines

Hyperparamete

Experiments

Experiment setting Results Ablation study

Motivation:

- represent system performance;
- differentiable;
- 3 quickly and analytically computable;
- 4 be generally applicable.

Reasons 2, 3 and 4 encouraged us to propose a formula which does not include the exact utility formulation in a given problem. Furthermore, our algorithm can find a solution in a setting where the

true utility function is unknown.

Introduction

Aim of the study Method showcase

Method preliminarie

Notation

Utility Function Epidemic threshold

Optimisation problem

Model

Overview

Loss function Solving optimisatio

Evaluation preliminaries

Baselines

Hyperparameter

Experiments

Experiment settin Results Ablation study

Let $S = [s_i]_{i \leq |\mathcal{V}|}^T. \; s_i \in \mathbb{R}^K$ represents cluster assignment of i-th node.

$$\mathcal{L}_u(\mathbf{S}; \mathbf{A}) = \frac{1}{|\mathcal{V}|} \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} a_{ij} (1 - s_i s_j^T)$$

Utility loss formula

 $\mathcal{L}_u(\mathbf{S}; \mathbf{A})$ forces nodes connected by an edge of high weight to be in the same cluster.

$$\mathcal{L}_u(\mathbf{S}; \mathbf{A}) = rac{1}{|\mathcal{V}|} \mathbf{e}^T (\mathbf{A} \odot (\mathbf{e} \mathbf{e}^T - \mathbf{S} \mathbf{S}^T)) \mathbf{e},$$

where \odot denotes element-wise multiplication. Proper (local) manipulation of the graph edges' weights additionally prevents the creation of isolated nodes.

Introduction

Aim of the study Method showcase

Method preliminari

Notation

- Utility Eunction
- Epidemic threshold
- Optimisation problem

Model

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment setting Results

Virus spreading loss

We aim to **maximise the epidemic threshold**. Softmax is a continuous assignment, hence we approximate the nodes' degree in the continuous form too.

$$d_i = \sum_{j=1}^{|\mathcal{V}|} \sum_{k=1}^{K} \Delta_{ij} \cdot s_{ik} \cdot s_{jk}$$
$$\mathbf{d} = \mathsf{diag}(\Delta^T \mathbf{S} \mathbf{S}^T)$$

Then, we define the virus spreading loss for a connected graph as

$$\mathcal{L}_{vs}(\mathbf{S};\mathbf{A}) = -rac{\|\mathbf{d} + \mathbf{e}\|_1}{\|\mathbf{d} + \mathbf{e}\|_2^2}.$$

Virus spreading loss

$$\mathcal{L}_{vs}(\mathbf{S}; \mathbf{A}) = -\frac{\|\mathbf{d} + \mathbf{e}\|_1}{\|\mathbf{d} + \mathbf{e}\|_2^2}$$

Presence of e (self-loop with weight 1) prevents $\mathcal{L}_{vs} \xrightarrow{d \to 0} -\infty$. For graph \mathcal{G} comprised of $C(\mathcal{G})$ connected components,

$$\mathcal{L}_{vs}(\mathbf{S}; \mathbf{A}) = \sum_{(\mathcal{V}_i, \mathcal{E}_i) \in C(\mathcal{G})} \frac{|\mathcal{V}_i|}{|\mathcal{V}|} \mathcal{L}_{vs}(\mathbf{S}^{(i)}; \mathbf{A}^{(i)}),$$

where $S^{(i)}$ and $A^{(i)}$ represent the assignment and weight matrices for the graph G_i , respectively.

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Hyperparameter

Experiments

Experiment setting Results Ablation study

Introduction

Method showcase

Method preliminari

- preliminarie
- Notation
- Utility Function
- Epidemic threshold
- Optimisation problem

Mode

Overview

Loss function

Solving optimisatio

Evaluation preliminaries

Baselines

Hyperparameter

Experiments

Experiment settir Results

Collapse regularisation

Collapse regularisation proposed by Tsitsulin⁵:

- prevents the trivial decomposition;
- otherwise the algorithm finds local minima (empty clusters) that trap the gradient;
- does not dominate optimisation of the main objective.

Let $||A||_F = \sqrt{\sum_{i \leq m, j \leq n} |a_{ij}|^2}$ denote the Frobenius norm.

$$\mathcal{R}_{c}(\mathbf{S}) = \frac{\sqrt{K}}{|\mathcal{V}|} \left\| \sum_{i} \mathbf{S}_{i}^{\top} \right\|_{F} - 1$$

⁵Tsitsulin et al., Graph Clustering with Graph Neural Networks

Final loss formula

Introduction Aim of the study Method showcase

Method preliminarie

- Notation
- Utility Function
- Epidemic threshold
- Optimisation problem

Model

Overview

Loss function

- preliminarie
- Baselines
- Hyperparamete

Experiments

Experiment setting Results Ablation study

$$\mathcal{L}_{DEEN}(\mathbf{S}; \mathbf{A}) = \mathcal{L}_u(\mathbf{S}; \mathbf{A}) + \lambda \mathcal{L}_{vs}(\mathbf{S}; \mathbf{A}) + \mathcal{R}_c(\mathbf{S})$$

- λ balances virus spreading and performance;
- high λ prioritise epidemic prevention;
- low λ favours performance;
- in all our experiment we recognised $\lambda = 0.4$ as the optimal level.

Introduction

Aim of the study Method showcase

Method preliminar

Massaire

- Enidemic threshold
- Optimisation problem

Mode

Overview

- Loss function
- Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment setting Results Ablation study

Solving optimisation problem

To conduct calculation we need to fix the number of clusters:

- large number yield more components, hence lowering the transmission;
- small number helps to maintain connectivity required for better performance.

To find the optimal level for a target epidemic threshold, we conduct a binary search to find the least number of clusters that exceeds the given level. For technical reasons, we also apply the maximum number of clusters which we consider as a hyperparameter.

Introduction

Aim of the study Method showcase

Method preliminarie

Notation Utility Function Epidemic threshold

Mode

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Hyperparameter

Experiments

Experiment setting Results Ablation study

For an adjacency matrix A of an undirected graph \mathcal{G} with n nodes and m edges, cluster assignments c_1, \ldots, c_n ,

Modularity

$$Q = \frac{1}{2m} \sum_{ij} [\mathbf{A}_{ij} - \frac{d_i d_j}{2m}] \delta(c_i, c_j).$$

Greedy algorithms:

- progressive by Clauset-Newman-Moore⁶;
- regressive by Girvan-Newman⁷.

⁶Clauset, Newman, and Moore, "Finding community structure in very large networks"

⁷Newman, "Fast algorithm for detecting community structure in networks"

Introduction

Aim of the study Method showcase

Method preliminarie

Notation Utility Function

Epidemic threshold Optimisation problem

Model

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Hyperparameter

Experiments

Experiment setting Results Ablation study

Baselines

Another analytical approach is **spectral clustering**. Vectors associated with positive eigenvalues of spectrum of the graph Laplacian point to minimal cuts.

GNN baselines:

- MinCutPool⁸: approximate the minimum *K*-cut;
- Just Balance GNN⁹: minimise local quadratic variation;
- DMoN¹⁰: maximise modularity.

⁸Bianchi, Grattarola, and Alippi, Spectral Clustering with Graph Neural Networks for Graph Pooling

⁹Bianchi, "Simplifying Clustering with Graph Neural Networks"

¹⁰Tsitsulin et al., Graph Clustering with Graph Neural Networks

Introduction

Aim of the study Method showcase

Method preliminarie

- preniminaries
- Hallas Forester
- Epidemic threshold
- Optimisation problem

Model

- Overview
- Loss function
- Solving optimisation

Evaluation preliminarie

- Baselines
- Hyperparameters

Experiments

Experiment setting Results Ablation study

Hyperparameters

For each experiment we use the same architecture and nearly the same hyperparameters.

- 3 non-normalised graph convolutional layers, 1 dense layer;
- ReLU activation after each layer;
- Adam optimiser with learning rate 0.001;
- train till convergence (2000 epochs);
- maximum number of clusters: ⁿ/₂ for transportation experiment, 32 otherwise (for larger graphs).

Three cases

Optimising network efficiency in the epidemic scenario

Introduction

Aim of the study Method showcase

Method preliminari

- Notation
- Litility Eurotia
- Epidemic threshold
- Optimisation problem

Model

- Overview
- Loss function
- Solving optimisation
- Evaluation preliminaries
- Baselines

Experiments

Experiment setting Results Ablation study

In the experimental part, we analyse three potential real-world applications.

- **Ride-pooling**: We limit potential combinations of travellers who can share a ride. Our goal is to minimise the pandemic risk while maintaining benefits associated with the ride-pooling service.
- Country regions: Given the region map of Poland, we seek an optimal decomposition (cross-regional lockdown) such that the business and educational exchange is unimpeded, while the pandemic risk is reduced.
- Peer-to-peer: For Gnutella P2P file sharing network, we aim to minimise the computer virus infection risk while maintaining high connectivity between peers.

Introduction

Method showcase

Method preliminarie

Notation Utility Function Epidemic threshole

Model

Overview

Loss function

Solving optimisatio

Evaluation preliminaries

Baselines

Hyperparameter

Experiments

Experiment setting Results Ablation study

Case I: Ride-pooling

Setting: Ride-pooling is a transportation service similar to standard taxi, with an additional perk that travellers share parts of their trips. The spatio-temporal distribution of travellers' requested trips creates a compatibility graph, where travellers of similar origin-destination paths (and time) are connected.

Aim: Decompose the compatibility graph in a manner such that the vehicle mileage reduction is maximised and the epidemic threshold is exceeded.

Edge weights:

$$w(v, u) = \frac{d(v) + d(u) - d(v, u)}{d(v) + d(u)},$$

d(v, u) - vehicle mileage when u and v travel together, d(u) - distance when u travels alone. **True utility**: External black-box¹¹.

 $^{^{11}}$ For creation of the compatibility and utility we rely on Kucharski and Cats, "Exact matching of attractive shared rides (ExMAS) for system-wide strategic evaluations".

Introduction

Aim of the study Method showcase

Method preliminarie

Notation

Utility Function Epidemic threshold

Optimisation problem

Model

Overview

Loss function

Solving optimisation

Evaluation preliminaries

Baselines Hyperparameter

Experiments

Experiment setting Results Ablation study

Case II: Country regions

Setting: We represent a map of 3000 regions of Poland as a graph, where neighbouring regions are connected. Each region is characterised by its population.

Aim: Optimise an optimal cross-regional lockdown such that the work and education exchange between regions remains stable and the risk of pandemic is reduced.

Edge weights:

$$w(v, u) = \left(\frac{p(v)}{2 \cdot \max_{w \in \mathcal{N}(u)} p(w)} + \frac{p(u)}{2 \cdot \max_{w \in \mathcal{N}(v)} p(w)}\right).$$

True utility: We follow the accessibility formulas by Levison¹²:

$$U(v, \mathcal{R}_v) = \sum_{u \in \mathcal{R}_v / \{v\}} \frac{p(v) \cdot p(u)}{d(u, v)},$$

where p(u) is the population, d(u, v) denotes distance between centres of regions and \mathcal{R}_v denotes regions reachable from v.

¹²Levinson, "Accessibility and the journey to work"

Introduction

Aim of the study Method showcase

Method preliminari

Notation

Utility Function Epidemic threshold

Model

Overview Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment setting Results Ablation study

Case III: P2P network

Setting: Gnutella peer-to-peer file sharing snapshots create a vast network. We assume hosts are prone to computer viruses spread via the network.

Aim: Maintain possibly many connections while reducing the risk of computer virus spreading.

Edge weights:

$$w(v,u) = \frac{1}{2 \cdot \deg(v)} + \frac{1}{2 \cdot \deg(u)}.$$

True utility: The fraction of preserved edges.

Introduction

Aim of the study Method showcase

Method

- Notation
- Utility Function
- Epidemic threshold
- Optimisation problem

Mode

- Overview
- Loss function
- Solving optimisation

Evaluation preliminaries

Baselines

Experiments

Experiment setting

Results

Ablation study

Case I: Ride-pooling

Introduction

Aim of the study Method showcase

Method

- Notation
- Listian Course
- Enidemic threshold
- Ontimisation problem

Mode

- Overview
- Loss function
- Solving optimisation

Evaluation preliminaries

- Baselines
- Hyperparamet

Experiments

- Experiment setting
- Results
- Ablation study

Epidemic threshold	0.3	0.4	0.5
DEEN	0.37	0.36	0.28
DmoN	-	-	-
Just Balance GNN	0.61	-	-
MinCutPool	-	-	-
Clauset-Newman-Moore	0.31	0.29	0.26

Case II: Regions in Poland

Introduction

Aim of the study Method showcase

Method preliminari

Notation

Utility Function

Epidemic threshold

Model

Overview Loss function

Solving optimisation

Evaluation preliminaries

Baselines

Hyperparameter

Experiments

Experiment setting

Results

Ablation study

Utility Clusters size (AVG \pm SD) Epidemic threshold 0.50.60.40.40.50.6DFFN 0.280.22 0.25 ± 0.01 0.17 ± 0.01 0.14 ± 0.01 0.38DMoN 0.530.43 0.36 ± 0.09 0.29 ± 0.08 _ Just Balance GNN 0.590.39 0.42 ± 0.02 0.28 ± 0.06 _ MinCutPool 0.76 0.47 ± 0.13 _ Clauset-Newman-Moore 0.330.260.22 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Case III: P2P Network

Ablation study

Optimising network efficiency in the epidemic scenario

Introduction

Aim of the study Method showcase

Method

- Notation
- Litility Eurotic
- Epidemic threshold
- Optimisation problem

Model

- Overview
- Loss function
- Solving optimisation

Evaluation preliminaries

- Baselines
- Hyperparamete

Experiments

- Experiment setting Results
- Ablation study