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Jagiellonian University, Kraków, Poland

18.04.2024

AIRA Seminar 18.04.2024



Optimising
network

efficiency in the
epidemic scenario

Introduction

Aim of the study

Method showcase

Method
preliminaries

Notation

Utility Function

Epidemic threshold

Optimisation problem

Model

Overview

Loss function

Solving optimisation

Evaluation
preliminaries

Baselines

Hyperparameters

Experiments

Experiment setting

Results

Ablation study

Aim of the study

We aim to reduce virus spreading in a system represented by the
graph structure while maintaining the highest utility levels. Deep
Epidemic Efficiency Network (DEEN) model:

• based on Graph Convolutional Neural Network with a novel loss
function;

• outputs a graph partition maximising utility at a set epidemic
threshold;

• applicable to real-life problems, validated against three scenarios;

• capable of maintaining close to the original utility with a great
reduction in the spreading potential.
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Method showcase

Ride-pooling service with 150 travellers in NYC. Decomposition of
graph into two clusters resulted in decrease of the performance
3% and increase in the epidemic threshold by 170%.
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Notation

• G = (V, E) - system: weighted, directed graph;

• A = (Aij) ∈ R|V|×|V| - adjacency matrix with weights;

• ∆ = (∆ij) ∈ {0, 1}|V|×|V|:

∆ij =

{
1, Aij > 0
0, Aij ≤ 0.

• Decomposition H for G is a subgraph (i.e. VH = V, EH ⊆ E)
consisting of disconnected components, i.e. H =

⋃
j≤k Hj such

that:
• VH =

⋃
j≤k VHj ,

• EH =
⋃

j≤k EHj ,
• VHi ∩ VHj = ∅ for i ̸= j.

The set of decompositions of graph G we denote as D(G).
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Utility Function

Utility function effectiveness of the network system given by the
graph. To ensure applicability of the algorithm to a variety of
scenarios, we make the following assumption of the utility function:

1 may not have a closed-form analytical solution;

2 can be approximated with link weights;

3 is evaluated with an external (black-box) algorithm.

Following postulates by Dawar1, we assume that the utility function
U : G −→ [0,+∞) is non-increasing with respect to the edge
removal, i.e.

H ⊆ G =⇒ U(H) ≤ U(G).

In particular,
H ∈ D(G) =⇒ U(H) ≤ U(G).

1Dawar, Bera, and Goyal, High-utility itemset mining for subadditive monotone utility functions
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SIS model

• S - Susceptible

• I - Infected

• γ - Infection rate

• λ - Recovery rate

β = γ/λ - Effective
transmission rate

We seek the critical effective transmission
βc rate where the epidemic is absorbed
with time.
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Epidemic threshold

The critical effective transmission depends on the topology of the
graph. Hence, we denote it as ET (G).
To account for the different nodes’ degrees, we apply the
heterogeneous mean-field approach. Following results by Wang2, for
a connected graph G = (V, E),

ET (G) =
∑

v∈V deg(v)∑
v∈V deg(v)2

.

The considered graph G is not always connected. For the not
connected graph G, let G =

⋃
i≤K Gi, where Gi = (Vi, Ei) is

connected for i ≤ K and Gi ∩ Gj = ∅ for i ̸= j. We denote
C(G) = {Gi : i ≤ K}. Then,

ET (G) =
∑
i≤K

|Vi|
|V|

ET (Gi).

2Wang et al., “Unification of theoretical approaches for epidemic spreading on complex networks”
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Optimisation problem

Input:

• weighted graph G;

• target epidemic threshold βc;

• utility function U (unknown to us).

Output:
Decomposition Hmax ∈ D(G) defined as:

max
H∈D(G)

U(H),

s.t. ET (H) ≥ βc.
(1)
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Model architecture

The framework is realised using Graph Convolutional Neural
Networks (GCNN) (Kipf and Welling3) with the output later defines
by the softmax.
To include information about the node features itself, we modify the
weight matrix before passing to the GCNN:

Â = A+ δI,

where δ ∈ R+ (as suggested by Lampert4). The GCNN returns the
assignment matrix S ∈ R|V|×K :

S = softmax(GCNN(Â)),

where K ∈ N+ is the resulting number of clusters.
Unlike Kipf and Welling, we do experience over-smoothing, hence we
do not apply Laplacian normalisation.

3Kipf and Welling, Semi-Supervised Classification with Graph Convolutional Networks

4Lampert and Scholtes, The Self-Loop Paradox: Investigating the Impact of Self-Loops on Graph Neural Networks
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Loss function

We construct the loss function so to incorporate three factors:

• utility maximisation;

• epidemic threshold maximisation;

• prevent degenerate solutions.
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Utility loss

Motivation:

1 represent system performance;

2 differentiable;

3 quickly and analytically computable;

4 be generally applicable.

Reasons 2, 3 and 4 encouraged us to propose a formula which does
not include the exact utility formulation in a given problem.
Furthermore, our algorithm can find a solution in a setting where the
true utility function is unknown.
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Utility loss formula

Let S = [si]
T
i≤|V|. si ∈ RK represents cluster assignment of i-th

node.

Lu(S;A) =
1

|V|

|V|∑
i=1

|V|∑
j=1

aij(1− sis
T
j )

Lu(S;A) forces nodes connected by an edge of high weight to be in
the same cluster.

Lu(S;A) =
1

|V|
eT (A⊙ (eeT − SST ))e,

where ⊙ denotes element-wise multiplication.
Proper (local) manipulation of the graph edges’ weights additionally
prevents the creation of isolated nodes.

AIRA Seminar 18.04.2024
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Virus spreading loss

We aim to maximise the epidemic threshold. Softmax is a
continuous assignment, hence we approximate the nodes’ degree in
the continuous form too.

di =

|V|∑
j=1

K∑
k=1

∆ij · sik · sjk

d = diag(∆TSST )

Then, we define the virus spreading loss for a connected graph as

Lvs(S;A) = −∥d+ e∥1
∥d+ e∥22

.

AIRA Seminar 18.04.2024
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Virus spreading loss

Lvs(S;A) = −∥d+ e∥1
∥d+ e∥22

Presence of e (self-loop with weight 1) prevents Lvs
d→0−−−→ −∞.

For graph G comprised of C(G) connected components,

Lvs(S;A) =
∑

(Vi,Ei)∈C(G)

|Vi|
|V|

Lvs(S
(i);A(i)),

where S(i) and A(i) represent the assignment and weight matrices for
the graph Gi, respectively.
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Collapse regularisation

Collapse regularisation proposed by Tsitsulin5:

• prevents the trivial decomposition;

• otherwise the algorithm finds local minima (empty clusters) that
trap the gradient;

• does not dominate optimisation of the main objective.

Let ||A||F =
√∑

i≤m,j≤n |aij |2 denote the Frobenius norm.

Rc(S) =

√
K

|V|

∥∥∥∥∥∑
i

S⊤
i

∥∥∥∥∥
F

− 1

5Tsitsulin et al., Graph Clustering with Graph Neural Networks
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Final loss formula

LDEEN (S;A) = Lu(S;A) + λLvs(S;A) +Rc(S)

• λ balances virus spreading and performance;

• high λ prioritise epidemic prevention;

• low λ favours performance;

• in all our experiment we recognised λ = 0.4 as the optimal level.

AIRA Seminar 18.04.2024
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Solving optimisation problem

To conduct calculation we need to fix the number of clusters:

• large number yield more components, hence lowering the
transmission;

• small number helps to maintain connectivity required for better
performance.

To find the optimal level for a target epidemic threshold, we conduct
a binary search to find the least number of clusters that exceeds the
given level. For technical reasons, we also apply the maximum
number of clusters which we consider as a hyperparameter.

AIRA Seminar 18.04.2024
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Modularity

For an adjacency matrix A of an undirected graph G with n nodes
and m edges, cluster assignments c1, . . . , cn,

Q =
1

2m

∑
ij

[Aij −
didj
2m

]δ(ci, cj).

Greedy algorithms:

• progressive by Clauset-Newman-Moore6;

• regressive by Girvan-Newman7.

6Clauset, Newman, and Moore, “Finding community structure in very large networks”

7Newman, “Fast algorithm for detecting community structure in networks”
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Baselines

Another analytical approach is spectral clustering. Vectors
associated with positive eigenvalues of spectrum of the graph
Laplacian point to minimal cuts.

GNN baselines:

• MinCutPool8: approximate the minimum K-cut;

• Just Balance GNN9: minimise local quadratic variation;

• DMoN10: maximise modularity.

8Bianchi, Grattarola, and Alippi, Spectral Clustering with Graph Neural Networks for Graph Pooling

9Bianchi, “Simplifying Clustering with Graph Neural Networks”

10Tsitsulin et al., Graph Clustering with Graph Neural Networks
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Hyperparameters

For each experiment we use the same architecture and nearly the
same hyperparameters.

• 3 non-normalised graph convolutional layers, 1 dense layer;

• ReLU activation after each layer;

• Adam optimiser with learning rate 0.001;

• train till convergence (2000 epochs);

• maximum number of clusters: n
2 for transportation experiment,

32 otherwise (for larger graphs).

AIRA Seminar 18.04.2024
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Three cases

In the experimental part, we analyse three potential real-world
applications.

I Ride-pooling: We limit potential combinations of travellers who
can share a ride. Our goal is to minimise the pandemic risk while
maintaining benefits associated with the ride-pooling service.

II Country regions: Given the region map of Poland, we seek an
optimal decomposition (cross-regional lockdown) such that the
business and educational exchange is unimpeded, while the
pandemic risk is reduced.

III Peer-to-peer: For Gnutella P2P file sharing network, we aim to
minimise the computer virus infection risk while maintaining
high connectivity between peers.

AIRA Seminar 18.04.2024
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Case I: Ride-pooling

Setting: Ride-pooling is a transportation service similar to standard
taxi, with an additional perk that travellers share parts of their trips.
The spatio-temporal distribution of travellers’ requested trips creates
a compatibility graph, where travellers of similar origin-destination
paths (and time) are connected.
Aim: Decompose the compatibility graph in a manner such that the
vehicle mileage reduction is maximised and the epidemic threshold is
exceeded.
Edge weights:

w(v, u) =
d(v) + d(u)− d(v, u)

d(v) + d(u)
,

d(v, u) - vehicle mileage when u and v travel together, d(u) -
distance when u travels alone.
True utility: External black-box11.

11For creation of the compatibility and utility we rely on Kucharski and Cats, “Exact matching of attractive shared rides
(ExMAS) for system-wide strategic evaluations”.
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Case II: Country regions
Setting: We represent a map of 3000 regions of Poland as a graph,
where neighbouring regions are connected. Each region is
characterised by its population.
Aim: Optimise an optimal cross-regional lockdown such that the
work and education exchange between regions remains stable and the
risk of pandemic is reduced.
Edge weights:

w(v, u) =

(
p(v)

2 ·maxw∈N (u) p(w)
+

p(u)

2 ·maxw∈N (v) p(w)

)
.

True utility: We follow the accessibility formulas by Levison12:

U(v,Rv) =
∑

u∈Rv/{v}

p(v) · p(u)
d(u, v)

,

where p(u) is the population, d(u, v) denotes distance between
centres of regions and Rv denotes regions reachable from v.
12Levinson, “Accessibility and the journey to work”
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Case III: P2P network

Setting: Gnutella peer-to-peer file sharing snapshots create a vast
network. We assume hosts are prone to computer viruses spread via
the network.
Aim: Maintain possibly many connections while reducing the risk of
computer virus spreading.
Edge weights:

w(v, u) =
1

2 · deg(v)
+

1

2 · deg(u)
.

True utility: The fraction of preserved edges.
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Case I: Ride-pooling
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Case II: Regions in Poland

Epidemic threshold 0.3 0.4 0.5

DEEN 0.37 0.36 0.28
DmoN - - -
Just Balance GNN 0.61 - -
MinCutPool - - -
Clauset-Newman-Moore 0.31 0.29 0.26
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Case III: P2P Network

Utility Clusters size (AVG ± SD)
Epidemic threshold 0.4 0.5 0.6 0.4 0.5 0.6

DEEN 0.38 0.28 0.22 0.25± 0.01 0.17± 0.01 0.14± 0.01
DMoN 0.53 0.43 − 0.36± 0.09 0.29± 0.08 −
Just Balance GNN 0.59 0.39 − 0.42± 0.02 0.28± 0.06 −
MinCutPool 0.76 − − 0.47± 0.13 − −
Clauset-Newman-Moore 0.33 0.26 0.22 0.00± 0.00 0.00± 0.00 0.00± 0.00
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