Evolutionary methods in automatic floor layout generation

Barbara Strug

Jagiellonian University, Institute of Applied Computer Science

1. Problem formulation, motivation and background
2. Evolutionary computations
3. Design representation
4. Evolutionary operators
5. Fitness evaluation
6. Examples and results
7. Open problems - future work

Based mainly on:
Barbara Strug, Ewa Grabska, Grażyna Ślusarczyk: Supporting the design process with hypergraph genetic operators. Adv. Eng. Informatics 28(1): 11-27 (2014)

Grzesiak-Kopeć, Katarzyna, Barbara Strug, and Grażyna Ślusarczyk. 2021.
"Evolutionary Methods in House Floor Plan Design" Applied Sciences 11, no. 17: 8229. https://doi.org/10.3390/app11178229

Poblem formulation (I)

- Geometric area as a base for the floor layout
- External knowledge - constraints, requirements
- Preferences

Poblem formulation (II)

- Same geometric area as a base -> different layouts
- External requirements or preferences?
\square

Optimization problem?

YES

Constraint based optimization problem
Case-based design
Possible well defined numerical boundaries (area, price, use of materials)

NO
Soft requirements
Personal preferences

Evolutionary computations (I)

Population algorithms

Population

Replacements

Mutation

Evolutionary computations (II)

Population algorithms

Initialization
Representation
Recombination and/or mutation
Fitness evaluation
Selection

Graph representation (CP)

Structural relations between components - graphs
CP-Graph - nodes, edges, bonds
Nodes - components

Edges - relations between components
Bonds - potential connections („placeholders")
Attributes - semantic information

Graph - representa a potential solution of a design task

Graph representation (CP - II)

Graph representation (Hypergraph)

Relations between components - hypergraphs (hierarchical or not) hypergraph - nodes, hyperedges, nodes - walls hyperedges - components and relations between components
attributes - semantic information

Hypergraph - representa a potential solution of a design task

Vector representation

No structural information

$$
\begin{aligned}
& \text { points }=[(0.0,0.0),(3.5,0.0),(5.5,0.0),(8.0 .0 .0),(11.0,0.0) \text {, } \\
& (14.0,0.0),(11.0,4.0),(8.0,4.0),(5.5,4.0),(3.5,4.0) \text {, } \\
& (0.0,4.0),(5.5,5.5),(9.5,5.5),(11.0,5.5),(14.0,5.5) \text {, } \\
& (14.0,9.5),(9.5,9.5),(5.5,9.5),(0.0,9.5)] \\
& \text { individual }=\{' R 1 ':[0,1,9,10], ' R 2 ':[1,2,8,9], ' R 3 ':[2,3,7,8] \text {, } \\
& \text { 'R4':[3,4,6,7], 'R5':[4,5,14,13], 'R6':[10,8,17,18], } \\
& \text { 'R7': }[8,6,13,11], \text { 'R8': }[11,12,16,17], \text { 'R9': }[12,14,15,16]\}
\end{aligned}
$$

Operators (Hypergraph)

Crossover - The exchange of subgraphs between two different designs

Operators (Hypergraph)

The exchange of subgraphs between two different designs
Limitations/problems

- embedding transformation (Ref*)
- computational complexity
- need for specialized algorithm(s)

(*) Grazyna Slusarczyk Barbara Strug, Anna Paszynska, Ewa Grabska, Wojciech Palacz ,Semantic-driven Graph Transformations in Floor Plan Design. Comput. Aided Des. 158: 103480 (2023)

Operators (Vector)

Mutation only
adding a point deleting a point moving a point

Operators (Vector)

Mutation only

adding a point deleting a point moving a point

Operators (Vector)

Mutation only
adding a point deleting a point moving a point

Fitness evaluation (Graph)

Graph based - low numer of produced solutions ;>
mainly human designer graph pattern mining

Requires the process of expression (graph to design)

Fitness evaluation (Vector)

Point representation based on the degree of fulfilment of requirements

$$
F(I)=\left\{\begin{aligned}
-\propto, & \exists \text { unfulfilled constraint } \\
\sum_{i=1}^{n} w_{i} \operatorname{Req}_{i}(I), & \text { otherwise }
\end{aligned}\right.
$$

Example (Vector)

Constraints
1 Six predefined rooms (3 Bedrooms, 1 bathroom, kitchen, living room)
2 No wall shorter than 0.8 m
Requirements
1 There should be at least eight spaces and w1 $=0.8$, Req1 from $\{0$, $0.33,0.5,0.67,1\}$
2 The largest room should be bigger that 21 m 2 and $\mathrm{w} 2=0.7$, Req2 from $\{0,1\}$.
3 There should exist a room larger than 7 m 2 adjacent to the largest room and $w 3=0.6$, Req3 from $\{0,1\}$.
4 The largest room should be oriented to the south and w4 $=0.5$, Req 4 from $\{0,1\}$.
5 There are not many spaces with areas less than 2 m 2 and $\mathrm{w} 5=0.5$, Req5 from \{0,0.2,0.4,0.6,0.8,1\}

Example (Vector)

Constraints
1 Six predefined rooms (3 Bedrooms, 1 bathroom, kitchen, living room)
2 No wall shorter than 0.8 m
Requirements
1 There should be at least eight spaces and $w 1=0.8$. Rea1 from $\{0$. $0.33,0.5,0.67,1\}$

REQ FUNCTIONS
2 The largest room should be k $\{0,1\}$.
3 There should exist a room la room and w3 $=0.6$, Req3 f
4 The largest room should be c from $\{0,1\}$.
5 There are not many spaces v
Req5 from \{0,0.2,0.4,0.6,0

Example (Vector)

Constraints
1 Six predefined rooms (3 Bedrooms, 1 bathroom, kitchen, living room)
2 No wall shorter than 0.8 m

Requirements

1 There should be at least eigh
t spaces and w1 = 0.8,
Req 1 from $\{0,0.33,0.5,0.67,1\}$
2 The largest room should be bigger that 21 m 2 and $\mathrm{w} 2=0.7$,
Req2 from $\{0,1\}$.
3 There should exist a room larger than 7 m 2 adjacent to the largest room and $w 3=0.6$, Req3 from $\{0,1\}$. 4 The largest room should be oriented to the south and $w 4=0.5$, Req4 from $\{0,1\}$.
5 There are not many spaces with areas less than 2 m 2 and $\mathrm{w} 5=0.5$, Req5 from $\{0,0.2,0.4,0.6,0.8,1\}$

$F\left(I_{1}\right)=1 \times 0.8+1 \times 0.7+1 \times 0.6+1 \times 0.5+1 \times 0.5=3.1$ MAX

$F\left(I_{3}\right)=1 \times 0.8+1 \times 0.7+1 \times 0.6+1 \times 0.5+1 \times 0.5=3.1$ MAX

$F\left(I_{2}\right)=1 \times 0.8+1 \times 0.7+1 \times 0.6+1 \times 0.5+1 \times 0.5=3.1$ MAX

$F\left(I_{4}\right)=1 \times 0.8+1 \times 0.7+1 \times 0.6+1 \times 0.5+1 \times 0.5=3.1 \mathrm{MAX}$

Example (Vector)

Constraints

1 Six predefined rooms (3 Bedrooms, 1 bathroom, kitchen, living room)
2 No wall shorter than 0.8m
Requirements
1 There should be at least eight spaces and $w 1=0.8$, Req1 from $\{0,0.33,0.5,0.67,1\}$
2 The largest room should be bigger that 21 m 2 and $\mathrm{w} 2=0.7$, Req2 from \{0,1\}.
3 There should exist a room larger than 7 m 2 adjacent to the largest room and w3 $=0.6$, Req3 from $\{0,1\}$.
4 The largest room should be oriented to the south and w4 = 0.5, Req4 from $\{0,1\}$.
5 There are not many spaces with areas less than 2 m 2 and $\mathrm{w} 5=0.5$, Req5 from $\{0,0.2,0.4,0.6,0.8,1\}$

$F\left(I_{5}\right)=0 \times 0.8+1 \times 0.7+1 \times 0.6+1 \times 0.5+0.8 \times 0.5=2.2$

$F\left(I_{6}\right)=0 \times 0.8+0 \times 0.7+1 \times 0.6+1 \times 0.5+0.8 \times 0.5=1.5$

Conclusions

Graph based representation

+ better at prserving structural information
- complex operators
- smaller population

Vector based representation

+ faster computations
+ more flexible
- harder to add semantics

Other possibilities
Multi-storey buildings
Katarzyna Grzesiak-Kopeć,Barbara Strug , Grazyna Slusarczyk, SpecificationDriven Evolution of Floor Plan Design. PPSN (2) 2022 368-381
Graph learning ?

Thank you for your attention

