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� Ising Model

� Variational Autoregressive NN (VAN) and 

Hierarchical Autoregressive NN (HAN)

� Normalizing Flows and field theory
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��: �� → ��
Neural network:

�- weights (=parameters of function) – 	 100 � 	 10


� � 5 � � 4

�� � �� ∘ ���� ∘ ⋯ ∘ ��
Layer is e.g. �⃗� � �����⃗� �  �!

�� is composition of layers:



1. Sampling models with discrete

degrees of freedom (d.o.f.)
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„spin”: " � #1Periodic
boundary
conditions
in � and $
direction

Nearest Neighbors  
interactions

% � � & "�
'�,)*

")

Energy:

This is the simplest model of magnet:

… and probably the 
best-studied model in 
statistical physics.
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Probability of given configuration s:

- � & .�/0�,!
,

where partition function 

22 configurations, 
3 � 45 � # spins

Order parameter:

� � 1
3 & "�

�
absolute magnetization per spin

4 spins

4 spins

7 � 1
8.�+.9:8;9.
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1) For 7 � 0 (infinite temperature):
disordered phase, � =0

Properties:

2) For 7 � ∞ (zero temperature):
ordered phase, � =1

3)  When 4 → ∞ we have second-order phase transition at:
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	 � & 	 , +�,!
,

For some observable 	

	 = 1
3>?�@AB>

& 	 ,�
2CDEFGHC

�I�
where ,� sampled from +

Problem: how to sample from +?

Usually done by Markov Chain Monte Carlo (e.g. Metropolis algorithm), 
but:
- correlation between samples

- - � ∑ .�/0�,!, very hard to calculate (no access to the free energy L �
� �

/ log - and entropy)

22 configurations



Neural networks can be trained to be a sampler 
and provides variational estimate of -
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P� , � P� "�  P� "5 "�  P� "R "5, "� … P��"2|"2��, … , "�!

IDEA:
Network learns 3 (# of spins) conditional probabilities:

We denote probability of configuration , which network provides as:

P��,!

D. Wu, L. Wang, and P. Zhang, Phys. Rev. Lett., vol. 122, p. 080602

"� "5 "R "U
"V

"�W

"W "X
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"�
"5
"R

"2

Input: spin configuration (value 
of each spin) �#1,… #1!

Output: conditional 
probabilities

P� "� � �1
P� "5 � �1|"�
P� "R � �1 "5, "�

P� "2 � �1 "2��, … , "�

P� , � P� "�  P� "5 "�  P� "R "5, "� … P��"2|"2��, … , "�!

Autoregressive
networks:

Half of the connections 
removed.



Generate a spin configuration using network:
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Autoregressive network

Run network 3 (=# spins) times – after k-th run we obtain:
P��"� � �1 "���, … , "� and knowing it we DRAW "� value.

"�
"5
"R

"2

P� "� � �1
P� "5 � �1|"�
P� "R � �1 "5, "�

P� "2 � �1 "2��, … , "�



Training = adjust network parameters � such that P� , is 

as close to + , � -��.�/0�,! as possible. 
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Kullback–Leibler (KL) divergence

can measure difference between two distributions. 

We rewrite it using form 

+ , � �
Y .�/0�,!:

Z[\ ] 0, 
Z[\�P| + � 0 ↔ P � + 

Variational 
free energy!

L � � 1
7 log -
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Training = minimizing L_

Note: here we have sum over all states.

Instead:

& P� , `7% � ln P� , b
,

 →  1
3c?def

& `7% � ln P� , b
2gDhij

�I�
≡ Ll_

We estimate L_ on relatively small (~1000) batch of configurations 

generated using probability P� , . Ll_  is our loss function.



1) Generate a spin configuration using network.

2) Repeat point 1 3c?def times to get batch of spin configurations.

3) Calculate:

Ll_ � 1
3c?def

& `7% � ln P� , b
2gDhij

�I�
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4) Change parameters � so that Ll_ is smaller – standard 
backward propagation in NN: calculate gradient of loss 
function w.r.t. parameters �.

Points 1)-4) are called epoch. 

5) Train your network for ~10000 epoch.



Note: the 2D Ising model we consider has analitical 
solution for -�7, 4!:
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Provides 
benchmark for 
NN.
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7 � 0.6

Difference between P��,! and +�,! is very small.

Ll_  

epochs

Exact solution 
for Ising model
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� It is there a better 
way to numerate the 
spins?

"� "5 "R

"�W

� We can use a property of Nearest Neighbour  
interactions:

Probability of green
interior depends only on
orange boundary
(Hammersley-Clifford 
theorem) 

Białas, Korcyl, TS, Comput.Phys.Commun. 281 (2022) 108502
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1st network 2nd network
(called 4 times)

3rd network
(called 16 times)

These networks have additional 
dependence on boundary surrounding 
them
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Much better scaling of 
numerical cost with system 
size L than original algorithm
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Deviation from 
exact value

~1.5% error for L=32 ~0.1% error for L=128VAN: HAN:



� NN cannot learn + " perfectly. We can however correct it. 
There are two ways to do this:
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K. A. Nicoli, S. Nakajima, N. Strodtho, W. Samek, K.-R. Muller, and 

P. Kessel, Phys. Rev. E, vol. 101, p. 023304,

1) Neural Importance Sampling (NIS): Reweighting observables 

2) Neural Markov Chain Monte Carlo (NMCMC)

Here we focus on 2).



2 applications in statistical physics



� Potts model with 12 states:
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generalization of Ising model (2-state Potts model ≡ Ising model)

For Q>4 undergoes 1st order phase 
transition at:

Wolff cluster algorithm 

U. Wolff, Physics Letters B, vol. 228, no. 3, pp. 379–382, 1989

"� � 1, … , 12
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Energy density histogram:

Białas, Czarnota, Korcyl, TS, Phys.Rev.E 107 (2023) 5, 054127

Wolff cluster algorithm leads
to autocorrelation.

Color: HAN (neural network)

Black: Wolff algorithm
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The difference between P� , and + , can be canceled applying reweighting, 
Neural Importance Sampling (NIS):

Nicoli et al., 

Phys. Rev. E, 

vol. 101, p. 
023304

10x smaller errors of HAN compared to Wolff 
algorithm (at the same time of sampling)

Białas, Czarnota, Korcyl, TS, Phys.Rev.E 107 (2023) 5, 054127
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a

b

+ o, p �
� + "� + "5 "� + "R "5, "� … +�"2

5
|"2

5 ��, … , "�!+�"2
5 q�|"2/5, … , "�! … +�"2|"2��, … , "�!

+ o + p|o
Autregressive networks allow to calculate s
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4 spins

4 spins

Area law



2. Sampling models with continuous d.o.f.
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� After discretization:

Now we have real 
number in each site



� Problem: how to sample from 2d Gaussian 
distribution?
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1) We draw to random numbers t� and t5 from uniform 

distribution at (0,1):

9 t�, t5 � 1   �u9 t�, t5 ∈ �0,1! 9 is called prior 
distribution 

3) Then -� and -5 are distributed according to: 

2) We apply transformation:



� Our goal:

find distribution P��w! as close as possible to Boltzman 
distribution +�w!.
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Normalizing Flows:

Use some simple prior distribution P@x  and some transformation 

�: �� → �� to construct P�.

1) Sample variable y from P@x�y!,
2) Field configuration is:

w � ��z!
3) Probability of configuration:

P� w � P@x y det ~�
~y

��

� must be bijective and Jacobian should be easy to compute.

M. Albergo et. al, Phys.Rev.D 100 (2019) 3, 034515
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For wU theory we don’t know the form of P@x and �.

In Normalizing Flows one uses simple form of P@x (e.g. uniform or 
Gaussian) and neural network plays a role of �.
Kullback–Leibler (KL) divergence:

L_ � � �y P@x y log P� � y � �0 � y

where variational free energy:

As previously, this is our loss function for network training. 



� Neural networks can learn probability distributions.

� For discrete d.o.f. one can use autoregressive 
networks (conditional probabilities training). 

� For continuous d.o.f. one uses Normalizing Flows 
(„change of variables”)

� Both approaches not only gives configurations but 
also probabilities.

� We observe fast progress in this field!
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Thank you


