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Motivation

Time series data have been used in a variety of:

Domains
➢ Financial markets.
➢ Internet of things.
➢ Air quality.

Applications
➢ Pattern recognition.
➢ Forecasting.
➢ Signal processing. 1 e
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Increasing amount of data → Curse of dimensionality
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Feature selection

Feature selection (FS) is a process in which relevant features are selected from a data
set. Three main methods:

Filter. Separates attribute selection from the
learning algorithm.
Wrapper. Uses predictive accuracy of a learning
algorithm to select the attributes.
Embedded. Feature selection integrated into
the learning algorithm.

All features

Feature selection

Final features

Wrappers find more precise combinations of attributes → Computationally expensive
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Area of application

The main area of application of the proposed techniques is air quality prediction.

The emission of certain gases, such as CO2,
NO2, NOx , or PM, is deteriorating air quality.
According to the WHO, in 2022, 99% of the
population has been exposed to areas where air
quality limits are exceeded.
Prolonged exposure to noxious gases can cause
various diseases and even premature death.
The environment and ecosystems are negatively
affected by the deterioration of air quality. Source: WHO Website
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General objective

Develop efficient and effective feature selection techniques for deep learning
through multi-objective evolutionary algorithms and application of the created
methods for time series forecasting in different areas of interest.
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Specific objectives
SO1: Develop a comprehensive methodology and implement a multi-criteria decision-

making process for the comparison and evaluation of predictive models for time
series forecasting.

SO2: Study, design and develop a multi-objective evolutionary approach based on spatio-temporal
characteristics within the Autonomous Region of Murcia.

SO3: Define multi-objective optimization problems for FS, with objectives of different nature.

SO4: Solve the proposed optimization problems by identifying the best MOEAs and developing
surrogate-assisted approaches to reduce the computational cost of the algorithms.

SO5: Identify metrics to quantify the variability between surrogate-assisted approaches and facil-
itate the establishment of qualitative analysis.

SO6: Evaluate, validate and compare the developed FS methods with time series data for air
quality forecasting in the context of the Autonomous Region of Murcia, as well as in other
geographic locations and in other time series forecasting problems.
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Multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms (MOEAs) are multi-objective global search
and optimization techniques. Key characteristics:

Conflicting objective functions.
Non-dominated solutions.
Pareto front.
Solve complex problems.

Wrapper methods for FS can be defined as a multi-objective optimization problem.

Problem

High computational cost to converge in a set of diverse non-dominated solutions

Raquel Espinosa Fernández Universidad de Murcia 10 / 55
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Surrogate models

Solution

Use surrogate models to approximate the objective function of a MOEA

Surrogate models simulate the behaviour of a model and try to approximate its results,
which makes possible a reduction in computational costs. Key characteristics:

Evaluate candidate solutions instead of using the real objective function.
Reduce computational cost of the optimization.
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Summary of research methodology and results Datasets

Datasets

Type Location Task Duration Frequency Instances Attributes
Air quality Wroc law (Poland) Regression 2015 - 2017 Hourly 26304 9
Air quality La Aljorra (Spain) Regression/Classification 2017 - 2020 Daily 1461 17
Domotic house Valencia (Spain) Regression/Classification March - May 2012 15 minutes 4137 24
Smart building Vienna (Austria) Classification/Clustering 2013 - 2022 Hourly 32323407 14

Table 1: Summary of datasets.

La Aljorra monitoring station.
Source: Google Images

Smart buildings from Vienna.
Source: Siemens AG
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A time series forecasting based multi-criteria methodology for air quality
prediction

Title A time series forecasting based multi-criteria methodology
for air quality prediction

Authors Raquel Espinosa, José Palma, Fernando Jiménez,
Joanna Kamińska, Guido Sciavicco, Estrella Lucena-Sánchez

Journal Applied Soft Computing
Impact factor (2021) 8.263

JCR Rank (2021) Computer science, interdisciplinary applications: 11/112 (D1)
Computer science, artificial intelligence: 23/145 (Q1)

Cited by 41
Publisher Elsevier
Date 7 September 2021
ISSN 1568-4946
State Published

Contribution
Term, conceptualization, methodology, software, validation,
investigation, resources, data curation, writing – original draft,
writing – review and editing, visualization, project administration
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Methodology for the identification of DL architectures and comparison of
predictive models

Dataset: air quality from Wroc law.
Phases of the proposed methodology:

1 Sliding window transformation.
➢ Window sizes: 3, 6, 12, 24.

2 Hyper-parameter tuning.
➢ Machine learning: RF, Lasso, SVM.
➢ Deep learning: 1D-CNN, GRU, LSTM.

3 Statistical tests.
4 Multi-criteria decision making.
5 Step ahead predictions.

 
 
 

Best prediction models 

Sliding window transformation 
Time Series Lag Maker 
Window size 3, 6, 12, 24 

Missing values imputation 

Hyper-parameter tuning 
3-fold cross-validation 

1 repetition 
WS3-70, WS6-70, WS12-70, WS24-70 

1D-CNN, GRU, LSTM 
Random Forest, Lasso Regression, SVM 

Statistical tests 
10-fold cross-validation 

3 repetitions 
WS3-70, WS6-70, WS12-70, WS24-70 

1D-CNN, GRU, LSTM 
Random Forest, Lasso Regression, SVM 

RMSE, MAE, CC metrics 

Database 

WS3-30 
WS6-30 
WS12-30  
WS24-30 

WS3-70 
WS6-70 
WS12-70  
WS24-70 

Multi-criteria decision making 
WS3-30, WS6-30, WS12-30, WS24-30 

RMSE, MAE and CC metrics 
1-24 step-ahead predictions 

Exactness and robustness criteria 

Step-ahead  
predictions 

Best prediction model 

Best hyper-parameters 
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Multi-criteria decision making

To measure the goodness of the prediction
models. Two criteria:

Exactness.
Robustness.

For validation:
Error metrics: RMSE, MAE and CC.
6 best prediction models.
24-steps ahead.

Set of  prediction models
Test dataset

Number of steps-ahead

Criterion 1
Exactness

Criterion 2
Robustness

Weighted additive
aggregation function

Goodness

Best prediction model

RMSE, MAE and
CC normalization

Raquel Espinosa Fernández Universidad de Murcia 16 / 55
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Results
Model Wins Losses Wins−Losses
RF-WS24-70 21 0 21
GRU-WS24-70 20 0 20
LSTM-WS24-70 19 0 19
Lasso-WS24-70 20 1 19
LSTM-WS3-70 12 3 9
GRU-WS6-70 9 4 5
RF-WS3-70 8 4 4
RF-WS12-70 7 4 3
1DCNN-WS3-70 7 4 3
LSTM-WS6-70 7 4 3
RF-WS6-70 7 5 2
GRU-WS12-70 6 4 2
GRU-WS3-70 6 5 1
1DCNN-WS6-70 4 4 0
LSTM-WS12-70 4 5 -1
1DCNN-WS24-70 4 6 -2
1DCNN-WS12-70 4 7 -3
Lasso-WS12-70 6 11 -5
Lasso-WS6-70 5 14 -9
Lasso-WS3-70 4 15 -11
SVMRadial-WS3-70 3 20 -17
SVMRadial-WS6-70 2 21 -19
SVMRadial-WS12-70 1 22 -21
SVMRadial-WS24-70 0 23 -23

(a) MAE

Model Wins Losses Wins−Losses
Lasso-WS24-70 20 0 20
RF-WS24-70 20 0 20
GRU-WS24-70 20 0 20
LSTM-WS24-70 14 0 14
LSTM-WS3-70 9 3 6
RF-WS3-70 7 3 4
RF-WS6-70 7 3 4
GRU-WS6-70 7 3 4
RF-WS12-70 7 4 3
1DCNN-WS3-70 6 3 3
LSTM-WS6-70 6 4 2
1DCNN-WS6-70 5 3 2
GRU-WS3-70 5 4 1
1DCNN-WS24-70 5 4 1
1DCNN-WS12-70 4 4 0
GRU-WS12-70 4 5 -1
LSTM-WS12-70 4 6 -2
Lasso-WS12-70 6 8 -2
Lasso-WS6-70 5 12 -7
Lasso-WS3-70 4 16 -12
SVMRadial-WS3-70 3 20 -17
SVMRadial-WS6-70 2 21 -19
SVMRadial-WS12-70 1 22 -21
SVMRadial-WS24-70 0 23 -23

(b) RMSE

Model Wins Losses Wins−Losses
RF-WS24-70 10 0 10
LSTM-WS3-70 9 0 9
Lasso-WS24-70 8 0 8
RF-WS3-70 7 0 7
RF-WS6-70 7 0 7
RF-WS12-70 7 0 7
GRU-WS24-70 7 0 7
GRU-WS6-70 7 0 7
1DCNN-WS3-70 6 0 6
LSTM-WS6-70 6 0 6
GRU-WS3-70 5 0 5
LSTM-WS24-70 4 0 4
1DCNN-WS12-70 4 0 4
1DCNN-WS6-70 4 0 4
GRU-WS12-70 4 2 2
1DCNN-WS24-70 4 3 1
LSTM-WS12-70 4 3 1
Lasso-WS12-70 6 6 0
Lasso-WS6-70 5 11 -6
Lasso-WS3-70 4 13 -9
SVMRadial-WS3-70 3 20 -17
SVMRadial-WS6-70 2 21 -19
SVMRadial-WS12-70 1 22 -21
SVMRadial-WS24-70 0 23 -23

(c) CC

Table 2: Ranking of the NO2 models.
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Results

Model Goodness
LSTM-WS24-70 1.277197
Lasso-WS24-70 1.368710
RF-WS24-70 1.554364
LSTM-WS3-70 1.729293
GRU-WS6-70 1.804245
GRU-WS24-70 1.845464
RF-WS3-70 1.961961
RF-WS12-70 2.037450
RF-WS6-70 2.183755

Table 3: Set of the competing models in the multi-criteria decision-making process and goodness obtained
for NO2 prediction.
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Results

InputLayer
input:

output:

[(None, 1, 168)]

[(None, 1, 168)]

LSTM
input:

output:

(None, 1, 168)

(None, 1, 256)

Dropout
input:

output:

(None, 1, 256)

(None, 1, 256)

Dense
input:

output:

(None, 1, 256)

(None, 1, 1)

Figure 1: Architecture of the LSTM-WS24 deep
learning model for NO2 prediction.
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Figure 2: NO2 level predicted time series in test with
LSTM-WS24.
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Multi-objective evolutionary spatio-temporal forecasting of air pollution

Title Multi-objective evolutionary spatio-temporal forecasting of air
pollution

Authors Raquel Espinosa, Fernando Jiménez, José Palma
Journal Future Generation Computer Systems
Impact factor (2021)1 7.307
JCR Rank (2021)1 Computer science, theory & methods: 10/110 (D1)
Cited by 9
Publisher Elsevier
Date 31 May 2022
ISSN 0167-739X
State Published

Contribution
Conception and design of the study, acquisition of data,
analysis and interpretation of data, point by point revision
of reviewer’s comments

1At the time of publication of this thesis, the impact factor and JCR rank data for the year 2022 were not
available.

Raquel Espinosa Fernández Universidad de Murcia 20 / 55



Summary of research methodology and results Multi-objective evolutionary spatio-temporal forecasting of air pollution

Multi-objective optimization based spatio-temporal approach
3 objectives: RMSE of a LR predictive model of the monitoring stations.
MOEAs: NSGA-II, MOEA/D, SPEA2.
Ensemble learning approach based on stacking.
Learning algorithms: RF, LR, SVM, QRNN, MLP, kNN, ZeroR.
Comparison: interpolation based on an IDW.
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Pareto front
of LR models

Prediction
model

...

...

Input 

Learning
algorithm

Transformed
input 

Recursive
multi-step

forecasting

-steps ahead
predictions

Raquel Espinosa Fernández Universidad de Murcia 21 / 55



Summary of research methodology and results Multi-objective evolutionary spatio-temporal forecasting of air pollution

Multi-objective optimization based spatio-temporal approach
3 objectives: RMSE of a LR predictive model of the monitoring stations.
MOEAs: NSGA-II, MOEA/D, SPEA2.
Ensemble learning approach based on stacking.
Learning algorithms: RF, LR, SVM, QRNN, MLP, kNN, ZeroR.
Comparison: interpolation based on an IDW.

Prediction
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Prediction
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algorithm
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forecasting
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forecasting

-steps ahead
predictions

Recursive 
multi-step

forecasting
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predictions
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Results

Algorithm Best Worse Average SD
NSGA-II 0.35393 0.22136 0.30934 0.03169
MOEA/D 0.33819 0.17268 0.26805 0.04673
SPEA2 0.25006 0.14090 0.19320 0.02874

Table 4: Summary of the results of the MOEAs, 10,000 evaluations, 30 runs.

MOEA Win Loss Win – Loss
NSGA-II 2 0 2
MOEA/D 1 1 0
SPEA2 0 2 -2

Table 5: Ranking of MOEAs sorted from best to worse.
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Figure 3: 3D pareto front with NSGA-II.

0.0 0.2 0.4 0.6 0.8 1.0
Number of evaluations ×107

0.2

0.3

0.4

0.5

0.6

0.7

H
yp

er
vo

lu
m

e

Figure 4: Hypervolume evolution with NSGA-II.
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Summary of research methodology and results Multi-objective evolutionary spatio-temporal forecasting of air pollution

Results

Algorithm Ensemble
LR 0.108788
RF 0.107863
SVM 0.108686
MLP 0.109847
kNN 0.142134
QRNN 0.107168
ZeroR 0.153978

Table 6: RMSE evaluation, 10-fold cross-
validation, 10 repetitions of ensemble learning
algorithms

Algorithm Win Loss Win-Loss
RF 6 0 6
LR 5 0 5
SVM 5 0 5
QRNN 4 0 4
MLP 4 4 0
kNN 1 10 -9
ZeroR 0 11 -11

Table 7: Win-loss statistical test of algorithms.
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Summary of research methodology and results Multi-objective evolutionary spatio-temporal forecasting of air pollution

Results
Models RF LR SVM QRNN
Training MOEA + Ensemble 0.1306 0.2181 0.2063 0.1732
Training Interpolation 0.0819 0.2182 0.1370 0.1518
La Aljorra Test MOEA + Ensemble 0.2694 0.2504 0.2825 0.2677
La Aljorra Test Interpolation 0.3397 0.3268 0.3296 0.3021

Table 8: Goodness of the prediction models with RF, LR, SVM and QRNN.

Method Metric 1-step
ahead

2-steps
ahead

3-steps
ahead

4-steps
ahead

5-steps
ahead

6-steps
ahead

7-steps
ahead

RMSE 0.1118 0.1207 0.1229 0.1233 0.1207 0.1261 0.1408
MOEA + Ensemble MAE 0.0890 0.0960 0.0980 0.0984 0.0961 0.1014 0.1154

CC 0.5410 0.4863 0.4745 0.4724 0.4860 0.4581 0.3830
RMSE 0.1175 0.1207 0.1212 0.1296 0.1322 0.1346 0.1352

Interpolation MAE 0.0919 0.0936 0.0939 0.1014 0.1027 0.1035 0.1035
CC 0.3199 0.2673 0.2393 0.2420 0.2574 0.2057 0.1874

Table 9: Results of the evaluation of models on La Aljorra test set with LR.
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Figure 5: Original and predicted NO2 time series for 1-step ahead built with the multi-objective
optimization based spatio-temporal approach for LR.
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Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

Multi-objective evolutionary problems
which combine 4 objectives:

O1 RMSE of a surrogate model.
O2 Number of attributes.
O3 Correlation.
O4 ReliefF.

Regression problems: air quality and indoor
temperature.
MOEAs: NSGA-II, NSGA-III, MOEA/D,
SPEA2, IBEA, ϵ-MOEA, ϵ-NSGA-II.
New multi-criteria performance metric: H.
Comparison with other FS methods.
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O4 ReliefF.
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temperature.
MOEAs: NSGA-II, NSGA-III, MOEA/D,
SPEA2, IBEA, ϵ-MOEA, ϵ-NSGA-II.
New multi-criteria performance metric: H.
Comparison with other FS methods.

Algorithm 1 Fitness function for objective function
O1 (RMSE of a surrogate model)
Require: I = {bI

1, . . . , bI
w} {Individual}

Require: MΦ
R {Surrogate prediction model built

with learning algorithm Φ and trained with
dataset R with all attributes}

Require: V ⊂ D {Validation dataset}
Require: α {Imputation constant}
1: V ′ ← V
2: for i = 1 to w do
3: if bI

i = 0 then
4: for dt ∈ V ′ do
5: d i

t = α
6: end for
7: end if
8: end for
9: return RMSE(MΦ

R , V ′) {RMSE of surrogate
prediction model MΦ

R evaluated in dataset V ′}
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Comparison with other FS methods.

C (x) =
w∑

i=1
N (xi )

where N is a function that transforms
a boolean value into numeric (true = 1
and false = 0) and w is the number of
input attributes.
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PR (x) =
w∑

i=1
xi =true

ρR
i

where ρR
i is the normalized Pearson’s

correlation coefficient between the se-
lected attribute i and the output in
dataset R.
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SR (x) =
w∑

i=1
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σR
i

where σR
i is normalized reliefF score of

attribute i in dataset R.
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Results
Optimization

model QΦ
R,V (x) Number of

selected attributes HR HV HT
Run time
(minutes)

O1O2 0.2403 2 0.1234 0.2328 0.1442 9.80
O1O2O3 0.1939 16 0.0807 0.2182 0.1298 15.76
O1O2O4 0.2462 6 0.0928 0.2447 0.1647 18.33
O2O3O4 – 19 0.1006 0.2746 0.1965 7.65
O1O2O3O4 0.2006 4 0.1210 0.2347 0.1447 28.41

Table 10: Prediction model evaluation with NSGA-II for the
air quality problem, 100,000 evaluations and 10 runs.

Optimization model Win Loss Win-Loss
O1O2O3 4 0 4
O1O2O4 3 1 2
O1O2 1 2 -1
O2O3O4 1 2 -1
O1O2O3O4 0 4 -4

Table 11: Ranking of multi-objective optimiza-
tion models.

MOEA Win Loss Win-Loss
NSGA-II 6 0 6
IBEA 4 1 3
ϵ-MOEA 4 1 3
ϵ-NSGA-II 3 3 0
NSGA-III 2 4 -2
SPEA2 1 5 -4
MOEA/D 0 6 -6

Table 12: Ranking of the optimization algorithms with hypervolume metric.
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Results

Set Metric 1-step
ahead

2-steps
ahead

3-steps
ahead

4-steps
ahead

5-steps
ahead

6-steps
ahead

7-steps
ahead

RMSE 0.0761 0.0744 0.0749 0.0751 0.0755 0.0758 0.0773
R MAE 0.0533 0.0529 0.0534 0.0535 0.0537 0.0538 0.0548

CC 0.8892 0.8916 0.8900 0.8885 0.8861 0.8846 0.8805
RMSE 0.0814 0.0819 0.0822 0.0829 0.0832 0.0848 0.0873

T MAE 0.0494 0.0498 0.0503 0.0505 0.0507 0.0517 0.0537
CC 0.7535 0.7508 0.7507 0.7478 0.7467 0.7380 0.7257

Table 13: Results of the best prediction model
(O1O2O3-NSGA-II) for air quality evaluated on the
training set R and test set T .
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Figure 6: 1-step ahead time series predictions for
NO2 evaluated with O1O2O3-NSGA-II with test T .
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MOEAs based on surrogate models Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

Results

Method HR HT
Number of

selected attributes
Run time
(minutes)

O1O2O3-NSGA-II 0.0807 0.1298 16 15.76
M1 0.1246 0.1437 2 3.93
M2 0.1246 0.1437 2 4.09
M4 0.1235 0.1876 6 22.60
M6 0.1701 0.2069 1 2.16
M3 0.1227 0.2243 14 5.45
M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

Table 14: Comparison of FS methods for the air quality prob-
lem.

M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic
search.

M2. Hybrid filter-wrapper based on Reli-
efF and LSTM with deterministic search.

M3. Wrapper multi-objective evolution-
ary FS method based on LR.

M4. Wrapper multi-objective evolution-
ary FS method based on RF.

M5. CancelOut.

M6. RF.

Raquel Espinosa Fernández Universidad de Murcia 31 / 55



MOEAs based on surrogate models Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

Results

Method HR HT
Number of

selected attributes
Run time
(minutes)

O1O2O3-NSGA-II 0.0807 0.1298 16 15.76
M1 0.1246 0.1437 2 3.93
M2 0.1246 0.1437 2 4.09
M4 0.1235 0.1876 6 22.60
M6 0.1701 0.2069 1 2.16
M3 0.1227 0.2243 14 5.45
M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

Table 14: Comparison of FS methods for the air quality prob-
lem.

M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic
search.

M2. Hybrid filter-wrapper based on Reli-
efF and LSTM with deterministic search.

M3. Wrapper multi-objective evolution-
ary FS method based on LR.

M4. Wrapper multi-objective evolution-
ary FS method based on RF.

M5. CancelOut.

M6. RF.

Raquel Espinosa Fernández Universidad de Murcia 31 / 55



MOEAs based on surrogate models Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

Results

Method HR HT
Number of

selected attributes
Run time
(minutes)

O1O2O3-NSGA-II 0.0807 0.1298 16 15.76
M1 0.1246 0.1437 2 3.93
M2 0.1246 0.1437 2 4.09
M4 0.1235 0.1876 6 22.60
M6 0.1701 0.2069 1 2.16
M3 0.1227 0.2243 14 5.45
M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

Table 14: Comparison of FS methods for the air quality prob-
lem.

M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic
search.

M2. Hybrid filter-wrapper based on Reli-
efF and LSTM with deterministic search.

M3. Wrapper multi-objective evolution-
ary FS method based on LR.

M4. Wrapper multi-objective evolution-
ary FS method based on RF.

M5. CancelOut.

M6. RF.

Raquel Espinosa Fernández Universidad de Murcia 31 / 55



MOEAs based on surrogate models Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

Results

Method HR HT
Number of

selected attributes
Run time
(minutes)

O1O2O3-NSGA-II 0.0807 0.1298 16 15.76
M1 0.1246 0.1437 2 3.93
M2 0.1246 0.1437 2 4.09
M4 0.1235 0.1876 6 22.60
M6 0.1701 0.2069 1 2.16
M3 0.1227 0.2243 14 5.45
M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

Table 14: Comparison of FS methods for the air quality prob-
lem.

M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic
search.

M2. Hybrid filter-wrapper based on Reli-
efF and LSTM with deterministic search.

M3. Wrapper multi-objective evolution-
ary FS method based on LR.

M4. Wrapper multi-objective evolution-
ary FS method based on RF.

M5. CancelOut.

M6. RF.

Raquel Espinosa Fernández Universidad de Murcia 31 / 55



MOEAs based on surrogate models Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

Results

Method HR HT
Number of

selected attributes
Run time
(minutes)

O1O2O3-NSGA-II 0.0807 0.1298 16 15.76
M1 0.1246 0.1437 2 3.93
M2 0.1246 0.1437 2 4.09
M4 0.1235 0.1876 6 22.60
M6 0.1701 0.2069 1 2.16
M3 0.1227 0.2243 14 5.45
M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

Table 14: Comparison of FS methods for the air quality prob-
lem.

M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic
search.

M2. Hybrid filter-wrapper based on Reli-
efF and LSTM with deterministic search.

M3. Wrapper multi-objective evolution-
ary FS method based on LR.

M4. Wrapper multi-objective evolution-
ary FS method based on RF.

M5. CancelOut.

M6. RF.
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Multi-surrogate assisted multi-objective evolutionary algorithms for feature
selection in regression and classification problems with time series data
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Multi-surrogate assisted multi-objective evolutionary
algorithms for feature selection in regression and
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Journal Information Sciences
Impact factor (2021)3 8.233
JCR Rank (2021)3 Computer science, information systems: 16/164 (D1)
Cited by 13
Publisher Elsevier
Date 10 December 2022
ISSN 0020-0255
State Published

Contribution
Project administration, conceptualization, methodology,
data curation, visualization, investigation, software,
writing

3At the time of publication of this thesis, the impact factor and JCR rank data for the year 2022 were not
available.

Raquel Espinosa Fernández Universidad de Murcia 32 / 55



MOEAs based on surrogate models MOEAs for FS in regression and classification problems with time series data

Multi-surrogate assisted MOEA for FS with DL

Use of multiple surrogate assisted models.
➢ K -fold cross-validation.

Learning algorithms:
➢ Regression: RF and LSTM.
➢ Classification: RF and SVM.

New variability metric to qualitatively ana-
lyze FS results: VX

➢ Differences between multi-surrogate and
conventional wrapper approaches.

Comparison with conventional FS wrapper
methods.
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Use of multiple surrogate assisted models.
➢ K -fold cross-validation.

Learning algorithms:
➢ Regression: RF and LSTM.
➢ Classification: RF and SVM.

New variability metric to qualitatively
analyze FS results: VX

➢ Differences between multi-surrogate and
conventional wrapper approaches.

Comparison with conventional FS wrapper
methods.

VX (A, B) = 1
C

C∑
s=1

∣∣δA(xs) − δB(xs)
∣∣

where δA(xs) is the ranking of the at-
tribute subset xs obtained with the FS
method A and δB(xs) is the ranking of
subset xs obtained with the FS method
B. C is the cardinality of the set X cal-
culated as C = 2w − 1.
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Hypervolume evolution for regression problem
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(a) Multi-surrogate assisted – RF
0 50 100 150 200 250 300 350

Number of generations

0.65

0.70

0.75

0.80

0.85

0.90

H
yp

er
vo

lu
m

e

(b) Wrapper – RF
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(c) Multi-surrogate assisted – LSTM
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(d) Wrapper – LSTM

Figure 7: Hypervolume evolution of NSGA-II for the air quality regression problem.
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Hypervolume evolution for classification problem
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(b) Wrapper – RF
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(c) Multi-surrogate assisted – SVM
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(d) Wrapper – SVM

Figure 8: Hypervolume evolution of NSGA-II for the air quality classification problem.
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Pareto fronts for regression problem
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(b) Wrapper – RF
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Figure 9: Pareto fronts obtained with NSGA-II for the air quality regression problem.
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Pareto fronts for classification problem
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(c) Multi-surrogate assisted – SVM
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(d) Wrapper – SVM

Figure 10: Pareto fronts obtained with NSGA-II for the air quality classification problem.
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MOEAs based on surrogate models MOEAs for FS in regression and classification problems with time series data

Results

Method Number of
selected atributes

Number of
MOEA generations RMSE MAE CC HR

Multi-surrogate assisted – RF 39 692 0.0268 0.0178 0.9848 0.0497
Wrapper – RF 10 346 0.0262 0.0178 0.9851 0.0636
Multi-surrogate assisted – LSTM 19 1016 0.0723 0.0501 0.8697 0.1014
Wrapper – LSTM 19 20 0.0702 0.0488 0.8776 0.1023

Table 15: Evaluation of prediction models on the training dataset R for the air quality regression problem.

Method RMSE MAE CC HT
Multi-surrogate assisted – RF 0.0533 0.0385 0.8068 0.1816
Wrapper – RF 0.0573 0.0436 0.7728 0.2078
Multi-surrogate assisted – LSTM 0.0489 0.0316 0.8205 0.1217
Wrapper – LSTM 0.0493 0.0322 0.8177 0.1296

Table 16: Evaluation of prediction models on the test dataset T for the air quality regression problem.
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MOEAs based on surrogate models MOEAs for FS in regression and classification problems with time series data

Results

Method Number of
selected atributes

Number of
MOEA generations BA AUC HR

Multi-surrogate assisted – RF 32 678 1.0000 1.0000 0.0000
Wrapper – RF 9 555 1.0000 1.0000 0.3476
Multi-surrogate assisted – SVM 21 5567 0.8647 0.8314 0.2340
Wrapper – SVM 16 156 0.8230 0.7938 0.4688

Table 17: Evaluation of prediction models on the training dataset R for the air quality classification
problem.

Method BA AUC HT
Multi-surrogate assisted – RF 0.3530 0.8203 0.4471
Wrapper – RF 0.3341 0.7453 0.5122
Multi-surrogate assisted – SVM 0.5437 0.8079 0.4800
Wrapper – SVM 0.3441 0.8039 0.4920

Table 18: Evaluation of prediction models on the test dataset T for the air quality classification problem.

Raquel Espinosa Fernández Universidad de Murcia 39 / 55



MOEAs based on surrogate models MOEAs for FS in regression and classification problems with time series data

Results

Method Number of
selected atributes

Number of
MOEA generations BA AUC HR

Multi-surrogate assisted – RF 32 678 1.0000 1.0000 0.0000
Wrapper – RF 9 555 1.0000 1.0000 0.3476
Multi-surrogate assisted – SVM 21 5567 0.8647 0.8314 0.2340
Wrapper – SVM 16 156 0.8230 0.7938 0.4688

Table 17: Evaluation of prediction models on the training dataset R for the air quality classification
problem.

Method BA AUC HT
Multi-surrogate assisted – RF 0.3530 0.8203 0.4471
Wrapper – RF 0.3341 0.7453 0.5122
Multi-surrogate assisted – SVM 0.5437 0.8079 0.4800
Wrapper – SVM 0.3441 0.8039 0.4920

Table 18: Evaluation of prediction models on the test dataset T for the air quality classification problem.

Raquel Espinosa Fernández Universidad de Murcia 39 / 55
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Results

Evaluation
dataset

Performance
metric

1-step
ahead

2-steps
ahead

3-steps
ahead

4-steps
ahead

5-steps
ahead

6-steps
ahead

7-steps
ahead

RMSE 0.0780 0.0790 0.0801 0.0805 0.0807 0.0810 0.0820
R MAE 0.0549 0.0558 0.0569 0.0573 0.0576 0.0580 0.0586

CC 0.8469 0.8395 0.8345 0.8313 0.8293 0.8269 0.8235
RMSE 0.0633 0.0715 0.0746 0.0758 0.0764 0.077 0.0795

T MAE 0.0435 0.0493 0.0528 0.0545 0.0552 0.0554 0.0578
CC 0.6967 0.6052 0.5687 0.5533 0.5474 0.5404 0.5068

Table 19: Multi-surrogate assisted MOEA with
LSTM (air quality regression problem).
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Figure 11: 7-steps ahead forecasting for NO2 of the
multi-surrogate assisted MOEA with LSTM for re-
gression evaluated on test.
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Results

Evaluation
dataset

Performance
metric

1-step
ahead

2-steps
ahead

3-steps
ahead

4-steps
ahead

5-steps
ahead

6-steps
ahead

7-steps
ahead

R BA 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AUC 1.0 1.0 1.0 1.0 1.0 1.0 1.0

T BA 0.3270 0.3209 0.3153 0.3158 0.3163 0.3195 0.3212
AUC 0.8063 0.7911 0.7770 0.7779 0.7787 0.7862 0.7882

Table 20: Multi-surrogate assisted MOEA with RF
(air quality classification problem).
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Figure 12: 7-steps ahead forecasting for NO2 of the
multi-surrogate assisted MOEA with RF for classifi-
cation evaluated on test.
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Surrogate-assisted multi-objective evolutionary feature selection of
generation-based fixed evolution control for time series forecasting with
LSTM networks
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Surrogate-assisted MOEA of generation-based fixed evolution control for
FS with DL

Update of the surrogate model.
➢ Updating the dataset and building a new surrogate model.
➢ Incremental learning.

Configurations of the generation-based fixed evolution control method adjusting the
surrogate model update frequency: 25, 50, 100.

Diebold Mariano test.
Comparison with other surrogate-assisted approaches.

Dataset

Dataset

Dataset

Dataset

Surrogate-
assisted
MOEA

Learning
algorithm

Selected
attributes

Forectasting
model

Multi-step
ahead

predictions

Learning
algorithm
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MOEAs based on surrogate models Surrogate-assisted multi-objective evolutionary FS of generation-based fixed evolution control

Results

Evaluation
dataset

Performance
metric

1-step
ahead

2-steps
ahead

3-steps
ahead

4-steps
ahead

5-steps
ahead

6-steps
ahead

7-steps
ahead

RMSE 0.0834 0.0820 0.0818 0.0819 0.0818 0.0818 0.0815
R MAE 0.0572 0.0573 0.0575 0.0576 0.0574 0.0574 0.0573

CC 0.8661 0.8681 0.8683 0.8668 0.8664 0.8655 0.8666
RMSE 0.0943 0.0975 0.0979 0.0981 0.0983 0.0984 0.0985

T MAE 0.0727 0.0760 0.0766 0.0769 0.0770 0.0771 0.0771
CC 0.7535 0.7462 0.7469 0.7466 0.7465 0.7466 0.7467

Table 21: Results of the best model with RF for the air
quality forecast problem, evaluated on the training set R
and the test set T .
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Figure 13: 1-step ahead time series predictions for
NO2 evaluated with RF in test set T .
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MOEAs based on surrogate models Surrogate-assisted multi-objective evolutionary FS of generation-based fixed evolution control

Results

Method HR HT
Number of

selected attributes
Run time
(minutes)

Proposed method 0.0909 0.1421 14 25.17
M1 0.1246 0.1437 2 3.93
M2 0.1246 0.1437 2 4.09

O1O2 0.1234 0.1442 2 9.80
M4 0.1235 0.1876 6 22.60
M6 0.1701 0.2069 1 2.16
M3 0.1227 0.2243 14 5.45
M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

Table 22: Comparison of the best generation-based fixed evolu-
tion control model with other FS methods and other surrogate-
assisted approach for the air quality problem.

O1O2. Multi-objective optimization
model proposed in Surrogate-assisted
and filter-based multi-objective evolu-
tionary FS for DL.

M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic
search.

M2. Hybrid filter-wrapper based on Reli-
efF and LSTM with deterministic search.

M3. Wrapper multi-objective evolution-
ary FS method based on LR.

M4. Wrapper multi-objective evolution-
ary FS method based on RF.

M5. CancelOut.
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Time series classification and clustering

Source: Siemens AG
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Summary of research methodology and results Time series classification and clustering

Classification and clustering

Classification
Time series aggregated for three granularities:

➢ Day.
➢ Week.
➢ Month.

Time series classification techniques:
➢ kNN.
➢ Learning shapelets.
➢ SAX-VSM.
➢ BOSSVS.
➢ TimeSeriesForest.

Clustering
Energy time series grouped by ID.
133 time series in total (7 days × 24

hours).
Clustering techniques:

➢ Silhouette index.
➢ k-means.
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Classification
precision recall f1-score support

Energy 0.98 0.97 0.98 24271
Heating 0.72 0.88 0.79 8675
Cold water 0.73 0.72 0.72 26667
Warm water 0.75 0.71 0.73 25747
accuracy 0.80 85360
macro avg 0.79 0.82 0.80 85360
weighted avg 0.80 0.80 0.80 85360

Table 23: Classification report for TimeSeries-
Forest with day granularity.

precision recall f1-score support
Energy 0.99 0.99 0.99 2797
Heating 0.78 0.87 0.82 1359
Cold water 0.79 0.78 0.79 3242
Warm water 0.83 0.79 0.81 3264
accuracy 0.85 10662
macro avg 0.85 0.86 0.85 10662
weighted avg 0.85 0.85 0.85 10662

Table 24: Classification report for TimeSeries-
Forest with week granularity.

precision recall f1-score support
Energy 0.99 0.98 0.98 825
Heating 0.82 0.87 0.84 521
Cold water 0.78 0.76 0.77 944
Warm water 0.82 0.81 0.81 945
accuracy 0.85 3235
macro avg 0.85 0.86 0.85 3235
weighted avg 0.85 0.85 0.85 3235

Table 25: Classification report for TimeSeriesForest with month granularity.
Raquel Espinosa Fernández Universidad de Murcia 48 / 55



Summary of research methodology and results Time series classification and clustering

Clustering
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Figure 14: Silhouette score for 2 to 7 clusters for averaged hour of days of the week.

Raquel Espinosa Fernández Universidad de Murcia 49 / 55



Summary of research methodology and results Time series classification and clustering

Clustering
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Figure 15: 3 clusters k-means for energy IDs with mean per hour of days of the week.
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Conclusions I

The methodology for the evaluation and comparison of learning algorithms ob-
tained an unified and adapted results in order to solve any prediction problem
with time series.

RNN can capture the complexity of time series and build accurate and reliable
predictive models.
RF presented a satisfactory performance when applied to time series forecasting.
A multi-criteria decision-making process pooled several performance metrics
and established an appropriate comparison between different learning algorithms.
For air quality forecasting with time series in an area for which no information is
available, the prediction has been approximated with MOEAs using forecasts from
other geographically nearby areas.
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Conclusions II

Surrogate-assisted MOEAs have allowed FS in expensive problems such as time
series forecasting based on DL.

The use of a surrogate-assisted MOEAs with a DL algorithm for FS has managed
to find a satisfactory subset of features in a shorter computational time compared
to a conventional wrapper-type FS method.
NSGA-II is the MOEA that has obtained the best results in terms of hypervolume,
compared to other MOEAs of the state of the art.
Generation-based fixed evolution control approach allows information to be
efficiently added to surrogate models within the FS process.
Prediction models have been identified in various real contexts that potentially
allow forecasting in the near future and that can help institutions to make decisions
on environmental issues.
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Future work

Include the FS process within the spatio-temporal approach with LR.

Apply the surrogate and multi-surrogate assisted FS methods for forecasting
other air quality time series and compare its performance with NO2 results.
Use other DL algorithms as a surrogate model within the evolutionary multi-
objective FS method and compare their performance with the current method with
LSTM. Analyze the use of other multi-step ahead forecasting strategies.
Combine architecture search with FS for regression and classification problems
with MOEAs.
Apply the proposed FS methods in other fields.
Embed FS in LSTM networks with multi-objective evolutionary ensemble learn-
ing for time series forecasting.
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