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Motivation

Time series data have been used in a variety of:

@ Domains
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Increasing amount of data — Curse of dimensionality

o ———— Universidad de Murcia



Motivation Objectives v s and methc Summary

Feature selection

Feature selection (FS) is a process in which relevant features are selected from a data
set. Three main methods:

o Filter. Separates attribute selection from the Al features

learning algorithm. ‘ ‘ ‘ ‘ ‘
@ Wrapper. Uses predictive accuracy of a learning Feature selection

algorithm to select the attributes. }

o Embedded. Feature selection integrated into Final features
the learning algorithm.
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Motivation

Feature selection

Feature selection (FS) is a process in which relevant features are selected from a data

set. Three main methods:

All features

o Filter. Separates attribute selection from the

learning algorithm.

@ Wrapper. Uses predictive accuracy of a learning
algorithm to select the attributes.

o Embedded. Feature selection integrated into
the learning algorithm.

Feature selection

Final features

Wrappers find more precise combinations of attributes — Computationally expensive
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Area of application

The main area of application of the proposed techniques is air quality prediction.
@ The emission of certain gases, such as CO,,
NOy, NOy, or PM, is deteriorating air quality.

@ According to the WHO, in 2022, 99% of the
population has been exposed to areas where air
quality limits are exceeded.

@ Prolonged exposure to noxious gases can cause
various diseases and even premature death.

@ The environment and ecosystems are negatively
affected by the deterioration of air quality. Source: WHO Website
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General objective

Develop efficient and effective feature selection techniques for deep learning
through multi-objective evolutionary algorithms and application of the created
methods for time series forecasting in different areas of interest.
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Specific objectives
@ SO1: Develop a comprehensive methodology and implement a multi-criteria decision-

making process for the comparison and evaluation of predictive models for time
series forecasting.
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Conclusions and future

Summary of research methodology and results

Motivation Objectives Materials and methods

Specific objectives

@ SO1: Develop a comprehensive methodology and implement a multi-criteria decision-making
process for the comparison and evaluation of predictive models for time series forecasting.

@ SO02: Study, design and develop a multi-objective evolutionary approach based on spatio-
temporal characteristics within the Autonomous Region of Murcia.
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Conclusions and future work
Specific objectives
@ SO1: Develop a comprehensive methodology and implement a multi-criteria decision-making

process for the comparison and evaluation of predictive models for time series forecasting.

@ S02: Study, design and develop a multi-objective evolutionary approach based on spatio-temporal
characteristics within the Autonomous Region of Murcia.

@ SO3: Define multi-objective optimization problems for FS, with objectives of different
nature.
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Specific objectives
@ SO1: Develop a comprehensive methodology and implement a multi-criteria decision-making

process for the comparison and evaluation of predictive models for time series forecasting.

@ S02: Study, design and develop a multi-objective evolutionary approach based on spatio-temporal
characteristics within the Autonomous Region of Murcia.

@ SO03: Define multi-objective optimization problems for FS, with objectives of different nature.

@ SO4: Solve the proposed optimization problems by identifying the best MOEAs and

developing surrogate-assisted approaches to reduce the computational cost of the
algorithms.
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Specific objectives

@ SO1: Develop a comprehensive methodology and implement a multi-criteria decision-making
process for the comparison and evaluation of predictive models for time series forecasting.

@ S02: Study, design and develop a multi-objective evolutionary approach based on spatio-temporal
characteristics within the Autonomous Region of Murcia.

@ SO03: Define multi-objective optimization problems for FS, with objectives of different nature.

@ SO4: Solve the proposed optimization problems by identifying the best MOEAs and developing
surrogate-assisted approaches to reduce the computational cost of the algorithms.

@ SO5: Identify metrics to quantify the variability between surrogate-assisted approaches
and facilitate the establishment of qualitative analysis.
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Develop a comprehensive methodology and implement a multi-criteria decision-making
process for the comparison and evaluation of predictive models for time series forecasting.

Study, design and develop a multi-objective evolutionary approach based on spatio-temporal
characteristics within the Autonomous Region of Murcia.

Define multi-objective optimization problems for FS, with objectives of different nature.

Solve the proposed optimization problems by identifying the best MOEAs and developing
surrogate-assisted approaches to reduce the computational cost of the algorithms.

Identify metrics to quantify the variability between surrogate-assisted approaches and facil-
itate the establishment of qualitative analysis.

Evaluate, validate and compare the developed FS methods with time series data
for air quality forecasting in the context of the Autonomous Region of Murcia, as
well as in other geographic locations and in other time series forecasting problems.
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Develop a comprehensive methodology and implement a multi-criteria decision-making
process for the comparison and evaluation of predictive models for time series forecasting.

Study, design and develop a multi-objective evolutionary approach based on spatio-temporal
characteristics within the Autonomous Region of Murcia.

Define multi-objective optimization problems for FS, with objectives of different nature.

Solve the proposed optimization problems by identifying the best MOEAs and developing
surrogate-assisted approaches to reduce the computational cost of the algorithms.

Identify metrics to quantify the variability between surrogate-assisted approaches and facil-
itate the establishment of qualitative analysis.

Evaluate, validate and compare the developed FS methods with time series data for air
quality forecasting in the context of the Autonomous Region of Murcia, as well as in other
geographic locations and in other time series forecasting problems.
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Multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms (MOEAs) are multi-objective global search
and optimization techniques. Key characteristics:

o Conflicting objective functions.
@ Non-dominated solutions.
e Pareto front.

@ Solve complex problems.

Wrapper methods for FS can be defined as a multi-objective optimization problem.
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Conclusions and future work

Multi-objective evolutionary algorithms (MOEAs) are multi-objective global search
and optimization techniques. Key characteristics:

o Conflicting objective functions.
@ Non-dominated solutions.
e Pareto front.

@ Solve complex problems.

Wrapper methods for FS can be defined as a multi-objective optimization problem.

Problem

High computational cost to converge in a set of diverse non-dominated solutions
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Surrogate models

Use surrogate models to approximate the objective function of a MOEA
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Materials and methods Summary

Surrogate models

Use surrogate models to approximate the objective function of a MOEA

Surrogate models simulate the behaviour of a model and try to approximate its results,
which makes possible a reduction in computational costs. Key characteristics:

@ Evaluate candidate solutions instead of using the real objective function.

@ Reduce computational cost of the optimization.
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Datasets

Type Location Task Duration Frequency Instances Attributes
Air quality Wroctaw (Poland)  Regression 2015 - 2017 Hourly 26304 9
Air quality La Aljorra (Spain)  Regression/Classification 2017 - 2020 Daily 1461 17
Domotic house Valencia (Spain)  Regression/Classification March - May 2012 15 minutes 4137 24
Smart building  Vienna (Austria)  Classification/Clustering 2013 - 2022 Hourly 32323407 14

Table 1: Summary of datasets.

La Aljorra monitoring station.
Source: Google Images

Smart buildings from Vienna.
Source: Siemens AG
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A time series forecasting based multi-criteria methodology for air quality prediction

A time series forecasting based multi-criteria methodology for air quality

prediction

A time series forecasting based multi-criteria methodology
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Authors Raquel Espinosa, José Palma, Fernando Jiménez,

Joanna Kaminska, Guido Sciavicco, Estrella Lucena-Sanchez
Journal Applied Soft Computing

Impact factor (2021)
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JCR Rank (2021)

Computer science, interdisciplinary applications: 11/112 (D1)
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Cited by 41
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Date 7 September 2021
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State Published
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Methodology for the identification of DL architectures and comparison of

predictive models I

WS630 (o -
Waizo [ Sliding window transformation

Dataset: air quality from Wroctaw. T
Phases of the proposed methodology: e
1 Sliding window transformation. “’332;5333}}%312‘“
> Window sizes: 3, 6, 12, 24. S50, WS6.7a WS12.70, WS2A-70

1D-CNN, GRU, LSTM
Random Forest, Lasso Regression, SVM

2 Hyper—parameter tuning. P—
> Machine learning: RF, Lasso, SVM. Statisical tests

10-fold cross-validation

> Deep |earning: ].D-CNN, GRU, LSTM ws:cr7a,ws§r7gu‘jt:|‘/'s‘:?7a,wsz4r7u

1D-CNN, GRU, LSTM
Random Forest, Lasso Regression, SVM

3 Statistical tests. o e

Best prediction models

4 Multi-criteria decision making.

Multi-criteria decision making
WS3-30, WS6-30, WS12-30, WS24-30
RMSE, MAE and CC metrics

5 Step ahead predictions. 2t anpoheot st

Exactness and robustness criteria

Step-ahead
predictions
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Multi-criteria decision making

To measure the goodness of the prediction
models. Two criteria:

@ Exactness.
@ Robustness.
For validation:
@ Error metrics: RMSE, MAE and CC.
@ 6 best prediction models.

@ 24-steps ahead.
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Set of p prediction models

Test dataset
Number of steps-ahead

A time series forecasting based multi-criteria methodology for air quality prediction

RMSE, MAE and
CC normalization

Criterion 1 Criterion 2
Exactness Robustness
eRMSE;,eMAE;,eCC; rRMSE;,rMAE;,rCC;
i=1...,p i=L...p

)

Weighted additive

aggregation function

Goodness

&

Best prediction model
v

n{G;}

= Gmin |Grmin
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Results
Model Wins Losses Wins—Losses Model Wins Losses Wins—Losses Model Wins Losses Wins—Losses
RF-WS24-70 21 0 21 Lasso-WS24-70 20 0 20 RF-WS24-70 10 0 10
GRU-WS24-70 20 0 20 RF-WS24-70 20 0 20 LSTM-WS3-70 9 0 9
LSTM-WS24-70 19 0 19 GRU-WS24-70 20 0 20 Lasso-WS24-70 8 0 8
Lasso-WS24-70 20 1 19 LSTM-WS24-70 14 0 14 RF-WS3-70 7 0 7
LSTM-WS3-70 12 3 9 LSTM-WS3-70 9 3 6 RF-WS6-70 7 0 7
GRU-WS6-70 9 4 5 RF-WS3-70 7 3 4 RF-WS12-70 7 0 7
RF-WS3-70 8 4 4 RF-WS6-70 7 3 4 GRU-WS24-70 7 0 7
RF-WS12-70 7 4 3 GRU-WS6-70 7 3 4 GRU-WS6-70 7 0 7
1DCNN-WS3-70 7 4 3 RF-WS12-70 7 4 3 1DCNN-WS3-70 6 0 6
LSTM-WS6-70 7 4 3 1DCNN-WS3-70 6 3 3 LSTM-WS6-70 6 0 6
RF-WS6-70 7 5 2 LSTM-WS6-70 6 4 2 GRU-WS3-70 5 0 5
GRU-WS12-70 6 4 2 1DCNN-WS6-70 5 3 2 LSTM-WS24-70 4 0 4
GRU-WS3-70 6 5 1 GRU-WS3-70 5] 4 1 1DCNN-WS12-70 4 0 4
1DCNN-WS6-70 4 4 0 1DCNN-WS24-70 5 4 1 1DCNN-WS6-70 4 0 4
LSTM-WS12-70 4 5 -1 1DCNN-WS12-70 4 4 0 GRU-WS12-70 4 2 2
1DCNN-WS24-70 4 6 -2 GRU-WS12-70 4 5| 3 1DCNN-WS24-70 4 3 1
1DCNN-WS12-70 4 7 -3 LSTM-WS12-70 4 6 -2 LSTM-WS12-70 4 3 1
Lasso-WS12-70 6 11 -5 Lasso-WS12-70 6 8 -2 Lasso-WS12-70 6 6 0
Lasso-WS6-70 5 14 -9 Lasso-WS6-70 5 12 -7 Lasso-WS6-70 5 11 -6
Lasso-WS3-70 4 15 -11 Lasso-WS3-70 4 16 -12 Lasso-WS3-70 4 13 -9
SVMRadial-WS3-70 3 20 -17 SVMRadial-WS3-70 3) 20 -17 SVMRadial-WS3-70 3 20 -17
SVMRadial-WS6-70 2 21 -19 SVMRadial-WS6-70 2 21 -19 SVMRadial-WS6-70 2 21 -19
SVMRadial-WS12-70 1 22 -21 SVMRadial-WS12-70 1 22 -21 SVMRadial-WS12-70 1 22 =21
SVMRadial-WS24-70 0 23 -23 SVMRadial-WS24-70 0 23 -23 SVMRadial-WS24-70 0 23 -23
(a) MAE (b) RMSE (c) CC

Table 2: Ranking of the NO, models.
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Results

Model Goodness
LSTM-WS24-70  1.277197
Lasso-WS24-70 1.368710
RF-WS24-70 1.554364
LSTM-WS3-70 1.729293
GRU-WS6-70 1.804245
GRU-WS24-70 1.845464

RF-WS3-70 1.961961
RF-WS12-70 2.037450
RF-WS6-70 2.183755

Table 3: Set of the competing models in the multi-criteria decision-making process and goodness obtained
for NO, prediction.
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Results

input: | [(None, 1, 168)]
InputLayer
output: | [(None, 1, 168)]
input: None, 1, 168
LST™M P { )
output: | (None, 1, 256)
input: None, 1, 256
Dropout P ( )
output: | (None, 1, 256)
input: | (None, 1, 256)
Dense
output: (None, 1, 1)

Figure 1: Architecture of the LSTM-WS24 deep

learning model for NO, prediction.
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NO2 level

25 30 35 a0 a5 50
—— Prediction 1-step-ahead —— Prediction 6-steps-ahead —— Prediction 24-steps-ahead
Prediction 3-steps-ahead —— Prediction 12-steps-ahead — NO2

Figure 2: NO; level predicted time series in test with
LSTM-WS24.
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Multi-objective evolutionary spatio-temporal forecasting of air pollution
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Multi-objective optimization based spatio-temporal approach
@ 3 objectives: RMSE of a LR predictive model of the monitoring stations.
e MOEAs: NSGA-Il, MOEA/D, SPEA2.
@ Ensemble learning approach based on stacking.
o Learning algorithms: RF, LR, SVM, QRNN, MLP, kNN, ZeroR.
@ Comparison: interpolation based on an IDW.
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Multi-objective optimization based spatio-temporal approach

@ 3 objectives: RMSE of a LR predictive model of the monitoring stations.
e MOEAs: NSGA-Il, MOEA/D, SPEA2.

@ Ensemble learning approach based on stacking.

o Learning algorithms: RF, LR, SVM, QRNN, MLP, kNN, ZeroR.

@ Comparison: interpolation based on an IDW.

Pareto front
of LR models
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Multi-objective optimization based spatio-temporal approach

@ 3 objectives: RMSE of a LR predictive model of the monitoring stations.
e MOEAs: NSGA-Il, MOEA/D, SPEA2.

@ Ensemble learning approach based on stacking.

o Learning algorithms: RF, LR, SVM, QRNN, MLP, kNN, ZeroR.

o Comparison: interpolation based on an IDW.

/ Inputx /

Recursive
multi-step
forecasting

Learning
algorithm
Learning
algorithm

Learning
algorithm

h-steps ahead
predictions

h-steps ahead
predictions

h-steps ahead
predictions

Universidad de Murcia

Recursive
mult-step

Interpoled
forecasting P

h-steps ahead
predictions

Prediction
model &
Prediclion
model 3,

Interpolation
Ulx)

Recursive
multi-step
forecasting
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Multi-objective evolutionary spatio-temporal forecasting of air pollution

Results

Algorithm  Best Worse Average SD

NSGA-II 0.35393 0.22136 0.30934 0.03169
MOEA/D  0.33819 0.17268 0.26805 0.04673
SPEA2 0.25006 0.14090 0.19320 0.02874

Table 4: Summary of the results of the MOEAs, 10,000 evaluations, 30 runs.

MOEA Win Loss Win — Loss

NSGA-l 2 0 2
MOEA/D 1 1 0
SPEA2 0o 2 -2

Table 5: Ranking of MOEAs sorted from best to worse.
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Results
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Summary of research methodology and results

Results

Alcantarilla
Hypervolume
> o o o
= (3] [=>) =1

=
w

=]
¥

0.0 0.2 0.4 0.6 0.8 1.0

Number of evaluations -

Figure 4: Hypervolume evolution with NSGA-II.
Figure 3: 3D pareto front with NSGA-II.
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Results

Algorithm Ensemble

LR 0.108788
RF 0.107863
SVM 0.108686
MLP 0.109847
kNN 0.142134
QRNN 0.107168
ZeroR 0.153978

Table 6: RMSE evaluation, 10-fold cross-
validation, 10 repetitions of ensemble learning
algorithms

o ———— Universidad de Murcia

Multi-objective evolutionary spatio-temporal forecasting of air pollution

Algorithm Win Loss Win-Loss
RF 6 0 6

LR 5 0 5
SVM 5 0 5
QRNN 4 0 4
MLP 4 4 0
kNN 1 10 -9
ZeroR 0 11 -11

Table 7: Win-loss statistical test of algorithms.
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Results
Models RF LR SVM QRNN
Training MOEA + Ensemble 0.1306 0.2181 0.2063 0.1732
Training Interpolation 0.0819 0.2182 0.1370 0.1518
La Aljorra Test MOEA + Ensemble 0.2694 0.2504 0.2825 0.2677
La Aljorra Test Interpolation 0.3397 0.3268 0.3296 0.3021
Table 8: Goodness of the prediction models with RF, LR, SVM and QRNN.
Method Metric 1-step 2-steps 3-steps 4-steps 5-steps b-steps  7-steps

ahead ahead ahead ahead ahead ahead ahead
RMSE 0.1118 0.1207 0.1229 0.1233 0.1207 0.1261 0.1408
MOEA + Ensemble MAE 0.0890 0.0960 0.0980 0.0984 0.0961 0.1014 0.1154

CcC 0.5410 0.4863 0.4745 0.4724  0.4860  0.4581 0.3830
RMSE  0.1175 0.1207 0.1212  0.1296  0.1322  0.1346  0.1352
Interpolation MAE 0.0919 0.0936 0.0939 0.1014 0.1027 0.1035 0.1035
CcC 0.3199 0.2673  0.2393  0.2420 0.2574  0.2057  0.1874

Table 9: Results of the evaluation of models on La Aljorra test set with LR.
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RMSE 0.1118 0.1207 0.1229 0.1233 0.1207 0.1261 0.1408
MOEA + Ensemble MAE 0.0890 0.0960 0.0980 0.0984 0.0961 0.1014 0.1154

CcC 0.5410 0.4863 0.4745 0.4724 0.4860  0.4581 0.3830
RMSE  0.1175 0.1207 0.1212 0.1296  0.1322  0.1346  0.1352
Interpolation MAE 0.0919 0.0936  0.0939 0.1014 0.1027 0.1035 0.1035
CcC 0.3199 0.2673  0.2393  0.2420  0.2574  0.2057  0.1874

Table 9: Results of the evaluation of models on La Aljorra test set with LR.
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Summary of research methodology and results

Multi-objective evolutionary spatio-temporal forecasting of air pollution

Results
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Figure 5: Original and predicted NO, time series for 1-step ahead built with the multi-objective
optimization based spatio-temporal approach for LR.
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Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

o Multi-objective  evolutionary  problems
which combine 4 objectives:
01 RMSE of a surrogate model.
02 Number of attributes.
03 Correlation.
04 ReliefF.

@ Regression problems: air quality and indoor
temperature.

e MOEAs: NSGA-Il, NSGA-IlIl, MOEA/D,
SPEA2, IBEA, e-MOEA, e-NSGA-II.

@ New multi-criteria performance metric: H.

@ Comparison with other FS methods.
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Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

Algorithm 1 Fitness function for objective function
O1 (RMSE of a surrogate model)

Require: /= {b!,...,b!,} {Individual}

o Multi-objective  evolutionary  problems
which combine 4 objectives:

01 RMSE of a surrogate model. Require: M3 {Surrogate prediction model built
02 Number of attributes. with learning algorithm ¢ and trained with
. dataset R with all attributes}
O3 Correlation. Require: V C D {Validation dataset}
04 ReliefF. Require: o {Imputation constant}
1: Vi« V
@ Regression problems: air quality and indoor 2: for i =1to w do

3:  if b/ =0 then

temperature. 7 for d; € V' do
e MOEAs: NSGA-II, NSGA-IIl, MOEA/D, gi ddéf=a
SPEA2, IBEA, eMOEA, e-NSGA-II. 7=Zd i
i mritar s 8: end for
@ New multi-criteria performance metric: . 9 roturn RMSE(M®, V") {RMSE of surrogate
@ Comparison with other FS methods. prediction model M? evaluated in dataset V'}
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Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

o Multi-objective  evolutionary  problems
which combine 4 objectives:
01 RMSE of a surrogate model.
02 Number of attributes.

O3 Correlation. C(x) = Z/\[(X,-)
04 ReliefF. i=1
@ Regression problems: air quality and indoor where N is a function that transforms
temperature. a boolean value into numeric (true =1
o MOEAs: NSGA-Il, NSGA-Ill, MOEA/D, and false = 0) and w is the number of
SPEA2, IBEA, e-MOEA, e-NSGA-II. input attributes.

@ New multi-criteria performance metric: H.

@ Comparison with other FS methods.
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o Multi-objective  evolutionary  problems
which combine 4 objectives:

01 RMSE of a surrogate model.

02 Number of attributes. Y
O3 Correlation. Pr(x) = Z pil
04 ReliefF. sitrue
@ Regression problems: air quality and indoor where pF is the normalized Pearson’s
temperature. correlation coefficient between the se-
e MOEAs: NSGA-Il, NSGA-IlIl, MOEA/D, lected attribute / and the output in
SPEA2, IBEA, e-MOEA, e-NSGA-II. dataset R.

@ New multi-criteria performance metric: H.

@ Comparison with other FS methods.
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Surrogate-assisted and filter-based multi-objective evolutionary FS for DL

o Multi-objective  evolutionary  problems
which combine 4 objectives:
01 RMSE of a surrogate model.
02 Number of attributes.

w
03 Correlation. Sk (x) = Z g;‘?
04 ReliefF. i=1
xj=true
@ Regression problems: air quality and indoor
where of is normalized reliefF score of

temperature. " {7 q e
tt t taset K.
o MOEAs: NSGA-Il, NSGA-ll, MOEA/D, ~ o oWt I datase

SPEA2, IBEA, e-MOEA, e-NSGA-II.
@ New multi-criteria performance metric: H.

@ Comparison with other FS methods.
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Results

Optimization 5 Number of i Tird Optimization model Win Loss Win-Loss
model Qhv() selected attributes 'R Hy L (minutes) 010203 4 0 4

0102 0.2403 2 01234 02328 01442  9.80 010204 3 1 9

010203 0.1939 16 00807 02182 01298 1576

010204 0.2462 6 0.0028 02447 01647  18.33 0102 1 2 -1

020304 - 19 01006 0.2746 0.1965  7.65 020304 1 2 -1

01020304 0.2006 4 01210 0.2347 01447 2841 01020304 0 4 4

Table 10: Prediction model evaluation with NSGA-II for the

Table 11: Ranking of multi-objective optimiza-
air quality problem, 100,000 evaluations and 10 runs. e ultrobjective optimiz

tion models.

MOEA Win Loss Win-Loss

NSGA- 6 0 6
IBEA 4 1 3
~MOEA 4 1 3
eNSGA-Il 3 3 0
NSGA-Il 2 4 -2
SPEA2 1 5 -4
MOEA/D 0 6 -6

Table 12: Ranking of the optimization algorithms with hypervolume metric.
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Results

0.8
Set | Metric 1-step | 2-steps | 3-steps | 4-steps | 5-steps | 6-steps | 7-steps h
ahead | ahead | ahead | ahead | ahead | ahead | ahead 06
RMSE | 0.0761 | 0.0744 | 0.0749 | 0.0751 | 0.0755 | 0.0758 | 0.0773 81
R | MAE |0.0533 | 0.0529 | 0.0534 | 0.0535 | 0.0537 | 0.0538 | 0.0548 Z 04
CC | 0.8892 | 0.8916 | 0.8900 | 0.8885 | 0.8861 | 0.8846 | 0.8805 WL ‘\ﬂ‘\ ‘W"‘“
RMSE | 0.0814 | 0.0819 | 0.0822 | 0.0829 | 0.0832 | 0.0848 | 0.0873 0.2 W‘M | M v I
T | MAE |0.0494 | 0.0498 | 0.0503 | 0.0505 | 0.0507 | 0.0517 | 0.0537 R w‘& NP Y 4
CC | 0.7535 | 0.7508 | 0.7507 | 0.7478 | 0.7467 | 0.7380 | 0.7257 0.0
0 50 100 150 200 250
Table 13: Results of the best prediction model —— Real NO, —— 1l-step ahead prediction
(0O10203-NSGA-II) for air quality evaluated on the
training set R and test set T. Figure 6: 1-step ahead time series predictions for

NO; evaluated with 010203-NSGA-II with test T.
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Results

@ M1. Hybrid filter-wrapper based on cor-

Method He  Hr Number, of Run time relation and LSTM with deterministic
selected attributes (minutes) B
010203-NSGA-Il 0.0807 0.1298 16 15.76 searchs
M1 0.1246 0.1437 2 3.93 A .
M2 01246 0.1437 5 hod @ M2. Hybrid fllter.—wrapper t.)a.se(.i on Reli-
M4 0.1235 0.1876 6 22.60 efF and LSTM with deterministic search.
M6 0.1701  0.2069 1 2.16 o )
M3 0.1227 0.2243 14 5.45 @ M3. Wrapper multi-objective evolution-
M5 0.0602  0.2452 84 0.07 ary FS method based on LR.
All attributes 0.0560 0.2763 84 0.01
Table 14: C . ¢ ES NS i I @ M4. Wrapper multi-objective evolution-
able 14: Comparison o methods for the air quality prob- ary FS method based on RF.

lem.

@ M5. CancelOut.
e M6. RF.
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Results

@ M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic

Number of Run time
Method Hr /8 selected attributes (minutes) search.
010203-NSGA-1I 0.0807 0.1298 16 15.76 57\ .
M1 0.1246 01437 2 3.03 @ M2. Hybrid filter-wrapper based on Reli-
M2 0.1246  0.1437 2 4.09 efF and LSTM with deterministic search.
M4 0.1235 0.1876 6 22.60
M6 0.1701  0.2069 1 2.16 @ M3. Wrapper multi-objective evolution-
M3 01227 0.2243 14 5.45
M5 00602 Boded 7 ot ary FS method based on LR.
All attribut 0.0560 0.2763 84 0.01 S .
attroutes @ M4. Wrapper multi-objective evolution-
Table 14: Comparison of FS methods for the air quality prob- ary FS method based on RF.
lem.
@ Mb5. CancelOut.
@ M6. RF.
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Multi-surrogate assisted MOEA for FS with DL

@ Use of multiple surrogate assisted models.
> K-fold cross-validation.

o Learning algorithms:
> Regression: RF and LSTM.
> C(lassification: RF and SVM.
@ New variability metric to qualitatively ana-
lyze FS results: Vx
> Differences between multi-surrogate and
conventional wrapper approaches.

@ Comparison with conventional FS wrapper
methods.
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Multi-surrogate assisted MOEA for FS with DL

@ Use of multiple surrogate assisted models.
> K-fold cross-validation.

o Learning algorithms: Vx( \FC Z 19a(x5) = 95(xs)]
> Regression: RF and LSTM.
> Classification: RF and SVM. where da(xs) is the ranking of the at-
e New variability metric to qualitatively tribute subset x; obtained with the FS
analyze FS results: Vx method A and dg(xs) is the ranking of
> Differences between multi-surrogate and subset xs obtained with the FS method
conventional wrapper approaches. B. C is the cardinality of the set X cal-
e Comparison with conventional FS wrapper culated as € = 2" — 1.
methods.
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Hypervolume evolution for regression problem

0.90 0.90
0.85 0.85
0.80 0.80-
0.75 0.75
|
0.70 j 0.70
0.65 0.65
0 100 200 300 400 500 600 700 0 50 100 150 200 250 300 350
Number of generations Number of generations
(a) Multi-surrogate assisted — RF (b) Wrapper — RF
0.9 o 0.85 Ve
' 0.80
0.75
* 0.70
0.65 /
0.55
0 200 400 600 800 1000 0 2 5 8 10 12 15 18 20
Number of generations Number of generations
(c) Multi-surrogate assisted — LSTM (d) Wrapper — LSTM

Figure 7: Hypervolume evolution of NSGA-II for the air quality regression problem.
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MOEAs for FS in regression and class

tion problems with time series data

Hypervolume evolution for classification problem
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Figure 8: Hypervolume evolution of NSGA-II for the air quality classification problem.
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MOEAs for FS in regression and class

Pareto fronts for regression problem
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Figure 9: Pareto fronts obtained with NSGA-II for the air quality regression problem.
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Pareto fronts for classification problem
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Figure 10: Pareto fronts obtained with NSGA-II for the air quality classification problem.
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MOEAs based on surrogate models MOEAs for FS in regression and classification problems with time series data
Results

Number of Number of

Methed selected atributes MOEA generations RMSE  MAE cc Hr

Multi-surrogate assisted — RF 39 692 0.0268 0.0178 0.9848 0.0497
Wrapper — RF 10 346 0.0262 0.0178 0.9851 0.0636
Multi-surrogate assisted — LSTM 19 1016 0.0723 0.0501 0.8697 0.1014
Wrapper — LSTM 19 20 0.0702 0.0483 0.8776 0.1023

Table 15: Evaluation of prediction models on the training dataset R for the air quality regression problem.

Method RMSE MAE CcC Hr

Multi-surrogate assisted — RF 0.0533 0.0385 0.8068 0.1816
Wrapper — RF 0.0573 0.0436 0.7728 0.2078
Multi-surrogate assisted — LSTM  0.0489 0.0316 0.8205 0.1217
Wrapper — LSTM 0.0493 0.0322 0.8177 0.1296

Table 16: Evaluation of prediction models on the test dataset T for the air quality regression problem.
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MOEAs based on surrogate models MOEAs for FS in regression and classification problems with time series data

Results

Number of Number of
Method selected atributes MOEA generations BA AUC Hr
Multi-surrogate assisted — RF 32 678 1.0000 1.0000 0.0000
Wrapper — RF 9 555 1.0000 1.0000 0.3476
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Results

MOEAs for FS in regression and class

Evaluation Performance 1-step 2-steps 3-steps 4-steps 5-steps 6-steps 7-steps
dataset metric ahead ahead ahead ahead ahead ahead ahead
RMSE 0.0780 0.0790 0.0801 0.0805 0.0807 0.0810  0.0820
R MAE 0.0549 0.0558 0.0569 0.0573 0.0576  0.0580  0.0586
CcC 0.8469 0.8395 0.8345 0.8313 0.8293 0.8269 0.8235
RMSE 0.0633 0.0715 0.0746  0.0758  0.0764 0.077 0.0795
T MAE 0.0435 0.0493 0.0528 0.0545 0.0552 0.0554 0.0578
cC 0.6967 0.6052 0.5687 0.5533 0.5474 0.5404  0.5068
Table 19: Multi-surrogate assisted MOEA with

LSTM (air quality regression problem).

quel Espinosa Fernandez Universidad de Murcia

tion problems with time series data
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Figure 11: 7-steps ahead forecasting for NO, of the
multi-surrogate assisted MOEA with LSTM for re-
gression evaluated on test.




MOEAs based on surrogate models MOEAs for FS in regression and classification problems with time series data

Results

Evaluation Performance 1-step 2-steps 3-steps 4-steps 5-steps 6-steps 7-steps S
dataset metric ahead ahead ahead ahead ahead ahead ahead 2 . J
R BA 10 10 10 10 10 10 10 1\\ ﬂ ﬂ
AuC 1.0 1.0 1.0 10 1.0 1.0 1.0 : . ! _ “ H‘,H -
T BA 03270 03209 03153 03158 03163 03195 03212 ﬂ M M “ ‘H\ \u I \ ‘J ‘ | i “\ |
AUC 08063 07911 07770 07779 0.7787 0.7862 0.7882 S0 ‘” ‘ | LA
7 E] o0 20 N
Table 20: Multl-surrogate assisted MOEA with RF — NO, —— 3steps abead prediction  ——  G-steps ahead prediction
H H ' H —— lLstep ahead prediction  —— ahead prediction T-steps ahead prediction
(all’ quallty classification prOblem)' 2-steps ahead prediction ~ —— Sesteps ahead prediction

Figure 12: 7-steps ahead forecasting for NO, of the
multi-surrogate assisted MOEA with RF for classifi-

cation evaluated on test.
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Surrogate-assisted multi-objective evolutionary feature selection of

generation-based fixed evolution control for time series forecasting with
LSTM networks

Surrogate-assisted multi-objective evolutionary

Title feature selection of generation-based fixed evolution
control for time series forecasting with LSTM networks
Authors Raquel Espinosa, Fernando Jiménez, José Palma
SE\\KI’&%%&ARY Journal Swarm and Evolutionary Computation
COMPUTATION Impact factor (2021)* | 10
JCR Rank (2021)* Computer science, artificial intelligence: (Q1)
o Publisher Elsevier
. Sugennan State Under review
A o voLTONATY SoPUTATON Project administration, conceptualization, methodology,
s Contribution data curation, visualization, investigation, software,
writing

At the time of publication of this thesis, the impact factor and JCR rank data for the year 2023 were not
available.
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Surrogate-assisted MOEA of generation-based fixed evolution control for
FS with DL

@ Update of the surrogate model.
> Updating the dataset and building a new surrogate model.
> |ncremental learning.

@ Configurations of the generation-based fixed evolution control method adjusting the
surrogate model update frequency: 25, 50, 100.

@ Diebold Mariano test.

@ Comparison with other surrogate-assisted approaches.

@
algorithm

Surrogate- ) Muli-step
assisted S:'i”"ed F"’e"‘ss‘“"g L | ahead
MOEA attributes model predictions

Learning
algorithm
k2
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MOEAs based on surrogate models

Surrogate-assisted multi-objective evolutio

ry FS of generation-based fixed evolution control

1.0
Evaluation Performance 1-step 2-steps 3-steps 4-steps 5-steps 6-steps 7-steps .
dataset metric ahead ahead ahead ahead ahead ahead ahead 08
RMSE 0.0834 0.0820 0.0818 0.0819 0.0818 0.0818  0.0815 0.6 ‘
R MAE 0.0572 0.0573 0.0575 0.0576 0.0574 0.0574  0.0573 gS‘ .
CcC 0.8661 0.8681 0.8683 0.8668 0.8664 0.8655  0.8666 =04 | “ h
RMSE 0.0943  0.0975 0.0979  0.0981  0.0983  0.0984  0.0985 ) \JH“ % f f
T MAE 0.0727  0.0760 0.0766  0.0769  0.0770  0.0771  0.0771 0.2 ‘M‘» M’»ﬂ M\ If 'W&/ W m
LA N
CcC 0.7535 0.7462  0.7469  0.7466  0.7465 0.7466  0.7467 o0 \‘/‘%4 "~ Mv/
. . 0 50 100 150 200 250
Table 21: Results of the best model with RF for the air } ' ’
—— Real NO, —— I-step ahead prediction

quality forecast problem, evaluated on the training set R

and the test set T.
Figure 13: 1-step ahead time series predictions for

NO, evaluated with RF in test set T.
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MOEAs based on surrogate models

Results

Number of Run time
Method Hr Hr selected attributes (minutes)

Proposed method 0.0909 0.1421 14 25.17

M1 0.1246 0.1437 2 3.93

M2 0.1246 0.1437 2 4.09

0102 0.1234 0.1442 2 9.80

M4 0.1235 0.1876 6 22.60

M6 0.1701 0.2069 1 2.16

M3 0.1227 0.2243 14 5.45

M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

Table 22: Comparison of the best generation-based fixed evolu-
tion control model with other FS methods and other surrogate-

assisted approach for the air quality problem.

Raquel Espinosa Fernandez

Universidad de Murcia

Surrogate-assisted multi-objective evolutionary FS of generation-based fixed evolution control

0102. Multi-objective optimization
model proposed in Surrogate-assisted
and filter-based multi-objective evolu-
tionary FS for DL.

M1. Hybrid filter-wrapper based on cor-
relation and LSTM with deterministic
search.

M2. Hybrid filter-wrapper based on Reli-
efF and LSTM with deterministic search.

M3. Wrapper multi-objective evolution-
ary FS method based on LR.

M4. Wrapper multi-objective evolution-
ary FS method based on RF.

M5. CancelOut.
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Results
@ 0102. Multi-objective optimization
model proposed in Surrogate-assisted
and filter-based multi-objective evolu-
Number of Run time tionary FS for DL.
Method Hr Hr selected attributes (minutes) Y
Proposed method 0.0909 0.1421 14 25.17 o M1 Hybnd f||ter_Wrapper based on cor-
M1 0.1246  0.1437 2 3.93 lati d LSTM with deterministi
M2 0.1246  0.1437 > 2.00 relation an wi eterministic
0102 0.1234  0.1442 2 9.80 search.
M4 0.1235  0.1876 6 22.60 o ]
M6 0.1701  0.2069 1 2.16 @ M2. Hybrid filter-wrapper based on Reli-
M3 0.1227  0.2243 14 5.45 efF and LSTM with deterministic search.
M5 0.0602  0.2452 84 0.07
All attributes 0.0560 0.2763 84 0.01 [~ M3 Wrapper multi_objective evolution-

ary FS method based on LR.

Table 22: Comparison of the best generation-based fixed evolu-

tion control model with other FS methods and other surrogate- o M4. Wrapper multi-objective evolution-

assisted approach for the air quality problem. ary FS method based on RF.

@ Mb5. CancelOut.
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Time series classification and clustering

Source: Siemens AG
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Summary of research methodology and results Time series classification and clustering

Classification and clustering

Classification
@ Time series aggregated for three granularities: Clustering
> Day. A .
> Week. @ Energy time series grouped by ID.
> Month. @ 133 time series in total (7 days x 24
o Time series classification techniques: hours).
> kNN. o Clustering techniques:
> Learning shapelets. > Silhouette index.
> SAX-VSM. > k-means.
> BOSSVS.
> TimeSeriesForest.
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Summary of research methodology and results Time series classification and clustering

Classification

precision recall fl-score support precision recall fl-score support
Energy 0.98 0.97 0.98 24271 Energy 0.99 0.99 0.99 2797
Heating 0.72 0.88 0.79 8675 Heating 0.78 0.87 0.82 1359
Cold water 0.73 0.72 0.72 26667 Cold water 0.79 0.78 0.79 3242
Warm water 0.75 0.71 0.73 25747 Warm water 0.83 0.79 0.81 3264
accuracy 0.80 85360 accuracy 0.85 10662
macro avg 0.79 0.82 0.80 85360 macro avg 0.85 0.86 0.85 10662
weighted avg 0.80 0.80 0.80 85360 weighted avg 0.85 0.85 0.85 10662
Table 23: Classification report for TimeSeries- Table 24: Classification report for TimeSeries-
Forest with day granularity. Forest with week granularity.

precision recall fl-score support

Energy 0.99 0.98 0.98 825
Heating 0.82 0.87 0.84 521
Cold water 0.78 0.76 0.77 944
Warm water 0.82 0.81 0.81 945
accuracy 0.85 3235
macro avg 0.85 0.86 0.85 3235

weighted avg 0.85 0.85 0.85 3235

Table 25: Classification report for TimeSeriesForest with month granularity.
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Clustering
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Figure 14: Silhouette score for 2 to 7 clusters for averaged hour of days of the week.
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Figure 15: 3 clusters k-means for energy IDs with mean per hour of days of the week.
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Conclusions |

@ The methodology for the evaluation and comparison of learning algorithms ob-
tained an unified and adapted results in order to solve any prediction problem
with time series.
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Conclusions |

@ The methodology for the evaluation and comparison of learning algorithms ob-
tained an unified and adapted results in order to solve any prediction problem
with time series.

@ RNN can capture the complexity of time series and build accurate and reliable
predictive models.

@ RF presented a satisfactory performance when applied to time series forecasting:

@ A multi-criteria decision-making process pooled several performance metrics
and established an appropriate comparison between different learning algorithms.

@ For air quality forecasting with time series-in an area for/which no-information is
available, the prediction has been approximated with MOEAs using forecasts from
other geographically nearby areas.
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Conclusions Il

@ Surrogate-assisted MOEAs have allowed FS in expensive problems such as time
series forecasting based on DL.

@ The use of a surrogate-assisted MOEAs with a DL algorithm for FS has managed
to find a satisfactory subset of features in a shorter computational time compared
to a conventional wrapper-type FS method.

@ NSGA-II is the MOEA that has obtained the best results in terms-of hypervolume,
compared to other MOEAs of the state of the art.

o Generation-based fixed evolution control approach allows information to be
efficiently added to surrogate models within the FS process.

o Prediction models have been identified in various real ‘contexts that potentially
allow forecasting in the near future and that'can help-institutions to make decisions
on environmental issues.
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Future work

@ Include the FS process within the spatio-temporal approach with LR.

@ Apply the surrogate and multi-surrogate assisted FS methods for forecasting
other air quality time series and compare its performance with NO, results.

@ Use other DL algorithms as a surrogate model within the evolutionary multi-
objective FS method and compare their performance with the current method with
LSTM. Analyze the use of other multi-step ahead forecasting strategies.

@ Combine architecture search with FS for regression and classification problems
with MOEAs.

@ Apply the proposed FS methods in other fields.

@ Embed FS in LSTM networks with multi-objective evolutionary ensemble learn-
ing for time series forecasting.

Raquel Espinosa Fernandez Universidad de Murcia 54 / 55






	Motivation
	Objectives
	General objective
	Specific objectives

	Materials and methods
	Summary of research methodology and results
	Datasets
	A time series forecasting based multi-criteria methodology for air quality prediction
	Multi-objective evolutionary spatio-temporal forecasting of air pollution
	MOEAs based on surrogate models
	Time series classification and clustering

	Conclusions and future work



