Interpretable Deep Learning with Prototypical Part

Bartosz Zieliński

About me

Education

- Habilitation (2022)
 - Wrocław University of Science and Technology
 - Explainable and interpretable machine learning with biomedical applications
- Ph.D. (2012)
 - Institute of Fundamental Technological Research, Polish Academy of Science
 - Detection of selected rheumatoid lesions based on hand radiographs
- MSc (2007)
 - Faculty of Mathematics and Computer Science, Jagiellonian University
 - Automatic detection of joint space narrowing in metacarpophalangeal and interphalangeal joints based on hand radiographs

Occupation

- Associate Professor
 - Faculty of Mathematics and Computer Science, Jagiellonian University
- Research Team Leader
 - IDEAS NCBR sp. z o. o.
- Computer Vision Expert
 - Ardigen S.A.

Research interests

- eXplainable Artificial Intelligence (XAI)
- Sustainable machine learning
- Effective deep learning training
- Training deep learning in demanding setups

Motivation

Motivation

- Deep learning is widely used due to its superior performance
- However, it suffers from the lack of interpretability (caused by the black-box character of standard deep neural networks)

Wrong decisions can be costly and dangerous

Explainable AI (post-hoc vs. self-explainable)

https://xaitutorial2020.github.io/raw/master/slides/aaai 2020 xai tutorial.pdf

Arrieta et al. Explainable artificial intelligence: Concepts, taxonomies, opportunities and challenges toward responsible ai. Information Fusion, 2020

Prototypical Parts Network (ProtoPNet)

Idea

Leftmost: a test image of a clay-colored sparrow
Second column: same test image, each with a
bounding box generated by our model

the content within the bounding box
is considered by our model to look similar
to the prototypical part (same row, third
column) learned by our algorithm

Third column: prototypical parts learned by our algorithm
Fourth column: source images of the prototypical parts in the third column
Rightmost column: activation maps indicating how similar each prototypical part resembles part of the test bird

Chen et al. This looks like that: deep learning for interpretable image recognition, NeurIPS 2019

Training

101

- Training phases (warm-up, main, push, finetuning)
- Special loss function

$$\min_{\mathbf{P}, w_{\text{conv}}} \frac{1}{n} \sum_{i=1}^{n} \text{CrsEnt}(h \circ g_{\mathbf{P}} \circ f(\mathbf{x}_{i}), \mathbf{y}_{i}) + \lambda_{1} \text{Clst} + \lambda_{2} \text{Sep}$$

$$\text{Clst} = \frac{1}{n} \sum_{i=1}^{n} \min_{j: \mathbf{p}_{j} \in \mathbf{P}_{y_{i}}} \min_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}$$

$$\text{Sep} = -\frac{1}{n} \sum_{i=1}^{n} \min_{j: \mathbf{p}_{j} \notin \mathbf{P}_{y_{i}}} \min_{\mathbf{z} \in \text{patches}(f(\mathbf{x}_{i}))} \|\mathbf{z} - \mathbf{p}_{j}\|_{2}^{2}$$

Experimental setup

• Tested on two datasets: CUB-200-2011 and Stanford Cars

Results

Interpretability	Model: accuracy
None	B-CNN [25]: 85.1 (bb), 84.1 (full)
Object-level attn.	CAM [56]: 70.5 (bb), 63.0 (full)
Part-level attention	Part R-CNN[53]: 76.4 (bb+anno.); PS-CNN [15]: 76.2 (bb+anno.);
	PN-CNN [3]: 85.4 (bb+anno.); DeepLAC [24]: 80.3 (anno.);
	SPDA-CNN[52]: 85.1 (bb+anno.); PA-CNN[19]: 82.8 (bb);
	MG-CNN[46]: 83.0 (bb), 81.7 (full); ST-CNN[16]: 84.1 (full);
	2-level attn. [49]: 77.9 (full); FCAN[26]: 82.0 (full);
	Neural const.[37]: 81.0 (full); MA-CNN[55]: 86.5 (full);
	RA-CNN [7]: 85.3 (full)
Part-level attn. +	ProtoPNet (ours): 80.8 (full, VGG19+Dense121+Dense161-based)
prototypical cases	84.8 (bb, VGG19+ResNet34+DenseNet121-based)

Why is this bird classfied as a red-bellied woodpecker?

Evidence for this bird being a red-bellied woodpecker: Prototype Training image Activation map

where prototype

Original image (box showing part that looks like prototype)

÷

comes from

 $6.499 \times 1.180 = 7.669$

 $4.392 \times 1.127 = 4.950$

Points

connection contributed

÷

÷

÷

: Total points to red-bellied woodpecker: 32.736

score

÷

ProtoPNet limitations

- Large number of prototypes (each of them is assigned to only one class)
- Similar prototypes of two different classes can be distant in representation space (here, fender)

ProtoPShare

Idea

Rymarczyk et al. ProtoPShare: Prototypical Parts Sharing for Similarity Discovery in Interpretable Image Classification. KDD 2021

Architecture

Algorithm

- Run ProtoPNet with standard settings
- Repetively find the two most similar prototypes and merge them into one
- Use data-dependent similarity, where prototypes are considered similar if they activate alike on the training images:

$$d_{DD}(p,\tilde{p}) = \frac{1}{\sum_{x \in X} (g(Z_x,p) - g(Z_x,\tilde{p}))^2}$$
$$g(Z_x,p) = \max_{z \in Z_x} \log\left(\frac{\|z - p\|^2 + 1}{\|z - p\|^2 + \varepsilon}\right) \text{ for } \varepsilon > 0$$

ProtoPShare

ProtoPShare (ours)

data-independent ---- ProtoPNet

otoPNet random

---- ProtoPNet (shared)

ProtoPShare advantages

Purple Finch

Blue Jay

Dickcissel

Sparrow

Song Sparrow

Vesper Sparrow

Swainson Warbler

ProtoPool

Idea

Rymarczyk et al. Interpretable Image Classification with Differentiable Prototypes Assignment. ECCV 2022

Architecture

Training

- We use the Gumbel-Softmax trick to learn the assignments of prototypes to data classes: Gumbel-softmax $(q, \tau) = (y^1, \dots, y^M) \in \mathbb{R}^M$
- We introduce a focal similarity function that widens the gap between maximal and average activation: $y^{i} = \frac{\exp((q^{i} + \eta_{i})/\tau)}{\sum_{m=1}^{M} \exp((q^{m} + \eta_{m})/\tau)}$ • We introduce a focal similarity function that widens the gap between overlay of prototype prototype activation between overlay of prototype p

$$g_p = \max_{z \in Z_x} g_p(z) - \max_{z \in Z_x} g_p(z)$$

• Force different prototypes in different slots of the same class:

$$\mathcal{L}_{orth} = \sum_{i < j}^{K} \frac{\langle q_i, q_j \rangle}{\|q_i\|_2 \cdot \|q_j\|_2}$$

CUB-200-2011			Stanford Cars				
Model	Arch.	Proto. #	Acc [%]	Model	Arch.	Proto. #	Acc [%]
ProtoPool (ours) ProtoPShare [47] ProtoPNet [8] TesNet [56]	R34	$202 \\ 400 \\ 1655 \\ 2000$	80.3 ± 0.2 74.7 79.5 82.7 ± 0.2	ProtoPool (ours) ProtoPShare [47] ProtoPNet [8] TesNet [56]	R34	$195 \\ 480 \\ 1960 \\ 1960$	89.3 ± 0.1 86.4 86.1 ± 0.2 92.6 ± 0.3
ProtoPool (ours) ProtoPShare [47] ProtoPNet [8] TesNet [56]	R152	$202 \\ 1000 \\ 1734 \\ 2000$	81.5 ± 0.1 73.6 78.6 82.8 ± 0.2	ProtoPool (ours) ProtoTree <u>38</u> ProtoPool (ours) ProtoTree <u>38</u>	R50 Ex3	195 195 195×3 195×3	88.9 ± 0.1 86.6 ± 0.2 91.1 90.5
ProtoPool (ours) ProtoTree 38 ProtoPool (ours)	iNR50	202 202 202×3	85.5 ± 0.1 82.2 ± 0.7 87.5	ProtoPool (ours) ProtoTree <u>38</u> ProtoPNet 8	Ex5	195×5 195×5 1960×5	91.6 91.5 91.4
ProtoPool (ours) ProtoPool (ours)	Ex3 $202\times$ $202\times$ $202\times$	202×3 202×3 202×5	86.6 87.6	TesNet [56]		1960×5	93.1
ProtoTree [38] ProtoPNet [8] TesNet [56]	Ex5	202×5 2000×5 2000×5	87.2 84.8 86.2				

Results

Model	ProtoPool	ProtoTree	ProtoPShare	ProtoPNet	TesNet
Portion of prototypes	$\sim 10\%$	$\sim 10\%$	[20%;50%]	100%	100%
Reasoning type	+	+/-	+	+	+
Prototype sharing	direct	indirect	direct	none	none

User studies

Idea

Sacha et al. ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts. WACV 2023

Architecture

Training

• Differentiate prototypes of same class using Jeffrey's similarity:

$$\mathcal{L}_{J}(Z, \mathbf{P}_{c}) = \mathcal{S}_{J}(v(Z, p_{1}), \dots, v(Z, p_{k}))$$

$${\mathcal S}_J(U_1,\ldots,U_l) = rac{1}{{l \choose 2}} \sum_{i < j} \exp(-{\mathcal D}_J(U_i,U_j))$$

$$\mathcal{D}_J(U,V) = \frac{1}{2}\mathcal{D}_{KL}(U||V) + \frac{1}{2}\mathcal{D}_{KL}(V||U)$$

$$v(Z,p) = \text{softmax}(||z_{ij} - p||^2 | z_{ij} \in Z : Y_{ij} = c)$$

(b) Low value of \mathcal{L}_J .

Results

Detect	Mathad	Drotroining	mIOU		
Dataset	Ivieulou	Pretraining	val	test	
Pascal	DeepLabv2	COCO	77.69	79.70	
	ProtoSeg	COCO	67.98	68.71	
	ProtoSeg	ImageNet	72.05	72.92	
Cityscapes	DeepLabv2	COCO	71.40	70.40	
	ProtoSeg	COCO	55.35	56.77	
	ProtoSeg	ImageNet	67.23	67.04	

Prediction

Example (class cat)

Image

Prototype 1 activation

Prototype 2 activation

Prototype 3 activation

Segmentation map

Example (class person)

Image

Prediction

Interpretation with prototypes

Conclusions & future works

Conclusions

- We provide self-explainable methods based on prototypes
- In contrast to existing methods, they:
 - share prototypes between classes
 - increase model interpretability
 - can be used to find similarities between classes
 - focus the model on salient features

Future works

- Sustainable and interpretable deep learning
- Interpretable counterfactual examples
- Prototypes (personalized) visualization
- Interactive interpretable learning

Thank you for your attention!

MLSS^S 2023

MACHINE LEARNING SUMMER SCHOOL ON APPLICATIONS IN SCIENCE

26 JUNE – 2 JULY / KRAKÓW, POLAND