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Motivation



Motivation

e Deep learning is widely used due to its superior performance
e However, it suffers from the lack of interpretability (caused by the black-box
character of standard deep neural networks)
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Hybrid modelling approaches
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Interpretable feature engineering
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Arrieta et al. Explainable artificial intelligence: Concepts, taxonomies, opportunities and challenges toward responsible ai. Information Fusion, 2020
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Prototypical Parts Network (ProtoPNet)
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Leftmost: a test image of a clay-colored sparrow

Second column: same test image, each with a
bounding box generated by our model
-- the content within the bounding box
is considered by our model to look similar
to the prototypical part (same row, third
column) learned by our algorithm

Third column: prototypical parts learned by our
algorithm

'} looks like | : Fourth column: source images of the prototypical

S F parts in the third column

Rightmost column: activation maps indicating how
similar each prototypical part resembles
part of the test bird

looks like

Chen et al. This looks like that: deep learning for interpretable image recognition, NeurlPS 2019
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Training

e Training phases (warm-up, main, push, finetuning)
e Special loss function
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Experimental setup

e Tested on two datasets: CUB-200-2011 and Stanford Cars




Results

Interpretability

Model: accuracy

None

B-CNNJ25]: 85.1 (bb), 84.1 (full)

Object-level attn.

CAM]56]: 70.5 (bb), 63.0 (full)

Part-level
attention

Part R-CNNJ[53]: 76.4 (bb+anno.); PS-CNN [15]: 76.2 (bb+anno.);
PN-CNN [3]: 85.4 (bb+anno.); DeepLAC[24]: 80.3 (anno.);
SPDA-CNN]J52]: 85.1 (bb+anno.); PA-CNN[19]: 82.8 (bb);
MG-CNN]J46]: 83.0 (bb), 81.7 (full); ST-CNN[16]: 84.1 (full);
2-level attn.[49]: 77.9 (full); FCANJ[26]: 82.0 (full);

Neural const.[37]: 81.0 (full); MA-CNNJ[55]: 86.5 (full);
RA-CNN][7]: 85.3 (full)

Part-level attn. +
prototypical cases

ProtoPNet (ours): 80.8 (full, VGG19+Densel21+Densel61-based)
84.8 (bb, VGG19+ResNet34+DenseNet121-based)

Why is this bird classfied as a red-bellied woodpecker?

Evidence for this bird being a red-bellied woodpecker:

Original image Prototype Training image  Activation map ~ Similarity Class Points
(box showing part that where prototype score connection contributed
comes from

6.499 x 1.180 = 7.669

4.392 x 1.127 = 4.950

3.890 x 1.108 = 4.310

Total points to red-bellied woodpecker: 32.736



ProtoPNet limitations

e Large number of prototypes (each of them is assigned to only one class)

Similar prototypes of two different classes can be distant in representation
space (here, fender)




ProtoPShare
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Rymarczyk et al. ProtoPShare: Prototypical Parts Sharing for Similarity Discovery in Interpretable Image Classification. KDD 2021



Architecture
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Algorithm

e Run ProtoPNet with standard settings

e Repetively find the two most similar
prototypes and merge them into one

e Use data-dependent similarity, where
prototypes are considered similar if they
activate alike on the training images:
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ResNet34 DenseNetl121

ProtoPShare

accuracy

0.3 2000 1500 1000 500' 2000 1500 1000 500

number of prototypes number of prototypes

j_°_ ProtoPShare (ours) --r-- data-independent —+— ProtoPNet =4+ random —-=-- ProtoPNet (shared)



ProtoPShare advantages
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ProtoPool



ldea

Prothonotary
 Warbler

-
1
1
1

grey

Shared prototypes i

/
1

” black eye

Prototypical parts

yellow and black
feathers under tail

~

yellow striped
grey bill Wini feathers
yellow

primary color

yellow head
black eye

vl

_______________________

black crown

L -

N
\

A s ¥ et Y

Wilson
Warbler

beck and head
of equal length

olive wing
color

<

Rymarczyk et al. Interpretable Image Classification with Differentiable Prototypes Assignment. ECCV 2022



Architecture
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Training

e \We use the Gumbel-Softmax trick to learn the assignments of
prototypes to data classes: Gumbel-softmax(g, 7) = (4%, ..., y™) € RM

i exp((g'+n)/T)
: . . . . 4= ﬁf 1eXp(( n1+”hn)/7)
e \We introduce a focal similarity function that widens the gap between

m aXl ma | an d ave rag e a Ctlvatl on.: o overlay of prototype ~ prototype activation

training image activation heatmap

|-6 max: 6.10

9p = Max gp(2) — mean gy(2)

maximizing gap
2

mean: 0.52
0 min: 0.02

e Force different prototypes in different slots of the same class:
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Results

CUB-200-2011

Stanford Cars

Model Arch. Proto. # Acc [%]  Model Arch. Proto. # Acc [%)]

ProtoPool (ours) 202  80.34+0.2 ProtoPool (ours) 195  89.3£0.1

ProtoPShare |47] R34 400  74.7 ProtoPShare [47] R34 480  86.4

ProtoPNet [8] 1655 795 ProtoPNet [8] 1960  86.1+0.2

TesNet [56] 2000 82.740.2 TesNet [56] 1960  92.640.3

ProtoPool (ours) 202  81.54+0.1 ProtoPool (ours) R50 195  88.9+40.1

ProtoPShare [47] 1000 73.6 ProtoTree 38| 195  86.6+0.2

ProtoPNet [8] Rilm2 1734  78.6

TroNo 566 18] 2000 82.8:i:0 9 ProtoPool (ours) Ex3 1953 91.1

esNet [56] : "~ ProtoTree |38] x 195x3  90.5
irOtOEOOl ‘(?());rs) iNR50 ;8; Z;;ig; ProtoPool (ours) 195x5 91.6
rotoTree [38] 2207 ProtoTree [38] [ . 195%5 915

ProtoPool (ours) Ex3 202x3  87.5 ProtoPNet (8] 1960x5 914

ProtoTree [38] *3 202x3  86.6 TesNet [56] 1960x5 93.1

ProtoPool (ours) 202x5 87.6

ProtoTree [38] Exh 202x5 87.2

ProtoPNet [8] 2000x5 84.8

TesNet [56] 2000x5  86.2
Model ProtoPool ProtoTree ProtoPShare ProtoPNet TesNet
Portion of prototypes ~10% ~10% [20%;50%) 100% 100%
Reasoning type + +/— + + +
Prototype sharing direct indirect direct none none




User studies
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ProtoSeg
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Segmentation

Prototypes of class bus Interpretation with prototypes

Sacha et al. ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts. WACV 2023



Architecture
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Training

e Differentiate prototypes of same class
using Jeffrey’s similarity:

image prototype prototype activation
activation difference

LJ(Z, Pc) = SJ(’U(Z,pl), cen ,’U(Z, pk)) (a) High value of Lj.

(li) Zexp(—DJ(Ui, U,))

D;(U,V) = iDkr(U||V) + 3Dk (V|U)

SJ(Ul,...,Ul)Z

image prototype

2 prototype activation
U(Z, p) — SOftmaX(”Zij _ p“ |z’1,j = 7 }/Z] — C) activation difference
(b) Low value of Lj.



Results

Dataset Method Pretraining valm IOUteS "
DeepLabv2 COCO 77.69 79.70

Pascal ProtoSeg COCO 6798 68.71
ProtoSeg ImageNet  72.05 72.92
DeepLabv2 COCO 71.40 70.40

Cityscapes ProtoSeg COCO 35:35 56.77
ProtoSeg ImageNet 67.23 67.04

Pascal VOC 2012

pm——

Ground Truth Image

Prediction
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( C I a S S Ca t ) Prototype 1 Prototype 2 Prototype 3 Prototype 4

Image Prototype 1 activation Prototype 2 activation Prototype 3 activation Prototype 4 activation Segmentation map




Example (class person)

Prediction Interpretation with prototypes Prototypes of class person




Conclusions & future works



Conclusions

e \We provide self-explainable methods based on prototypes

e In contrast to existing methods, they:

share prototypes between classes
increase model interpretability
can be used to find similarities between classes

O
O
O
o focus the model on salient features



Future works

Sustainable and interpretable deep learning
Interpretable counterfactual examples
Prototypes (personalized) visualization
Interactive interpretable learning
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