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The project

Quantum machine learning for analyzing multi- and hyperspectral
satellite images

Project’s goal:
Investigate the possibility of using
quantum computing and quantum
machine learning for remote sensing
and earth observation

Task: Cloud detection

▶ Data reduction - cloudy regions
can be removed from further
analysis

▶ Cloud cover important for
meteorological and climate
research.

Methods:

▶ Hybrid SVM

▶ Quantum SVM

▶ Quantum neural networks

Recently we have started another ESA project: ‘Quantum Advantage for Earth Observation’
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Data: 38-Cloud data set

▶ 38 Landsat-8 scene images
▶ 18 training scenes
▶ 20 test scenes

▶ Each scene image divided into ∼420 square
patches of size 384px × 384px patches
▶ ∼ 1.2 bln pixels in training set
▶ ∼ 1.4 bln pixels in test set

▶ Four spectral bands + ground-truth cloud mask:
▶ red: 630-680 nm
▶ green: 520-600 nm
▶ blue: 450-515 nm
▶ NIR: 845-885 nm

S. Mohajerani et al. ”A Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks,” 2018 IEEE 20th International Workshop on
Multimedia Signal Processing (MMSP), Vancouver, BC, 2018
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38-Cloud data: scenes

S. Mohajerani et al. ”A Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks,” 2018 IEEE 20th International Workshop on
Multimedia Signal Processing (MMSP), Vancouver, BC, 2018
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Support Vector Machines

▶ Classification supervised learning algorithm

▶ Maximization of margins

min
w,b

1

2
|w |2,

such that : y (i)(w · w (i) + b) ≥ 1, i = 1, . . . ,m

▶ Dual formulation

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

y (i)y (j)αiαj ⟨x(i), x(j)⟩

such that : αi ≥ 0,
m∑
i=1

αiy
(i) = 0

▶ Test phase

decision : sign

(
m∑
i=1

y (i)αi ⟨x , x(i)⟩+ b

)

Cortes, Corinna, and Vladimir Vapnik. ”Support-vector networks.” Machine learning 20.3 (1995): 273-297.
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SVM kernels

▶ Both training and test phase depends on ⟨x(i), x(j)⟩
▶ Kernel trick: exchange inner product for some

‘arbitrary‘ similarity measure

⟨x(i), x(j)⟩ 7→ Kij = ⟨ϕ
(
x(i)
)
, ϕ
(
x(j)
)
⟩

▶ The transformation ϕ:
▶ leads to higher dimensional space - improved

separability
▶ allows for nonlinear class boundaries

Computational complexity for kernelized SVM:

▶ Training phase: ∼ O(n ·m2)

▶ Test phase: ∼ O(n ·m)

Cortes, Corinna, and Vladimir Vapnik. ”Support-vector networks.” Machine learning 20.3 (1995): 273-297.
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Why go quantum?

▶ Hilbert space grows exponentially (2n) with number of qubits → improved separability of data

▶ The possibility of utilizing entanglement for finding complex correlations and patterns in the data

▶ Complicated kernel functions in Hilbert space (especially with entanglement) can be estimated faster on
quantum computer

▶ The noise in current quantum computing devices is tolerable in machine learning applications

Challenges:

▶ Classical data encoding into quantum Hilbert space

▶ Untrainability

▶ Noise issues
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“Introduction” to quantum computers

Noisy Intermediate-Scale Quantum (NISQ) devices era

Main types of QC

▶ Gate based

▶ Adiabatic

Gate based quantum computers

▶ superconducting qubits

▶ photonic

▶ ion traps

▶ topological

▶ quantum dots

▶ . . .

|0⟩

|0⟩ H • Z • H

▶ The measurement is customarily done in a
Z-basis

▶ Probabilities are obtained by repeating the
circuit runs
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Quantum computation

State preparation

S(x)
▶ QRAM
▶ Data encoding

▶ basis
▶ amplitude
▶ angle
▶ IQP

Quantum algorithm

U
▶ Most ‘first wave’ QML algorithms

considered only this part

▶ Exponential speedups

Measurement

▶ Makes the algorithm
non-deterministic

▶ Introduces additional
polynomial scaling to the
algorithm’s complexity
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SVMs with quantum kernels

The idea:
Perform kernel trick on a quantum mechanical Hilbert space

1. Embed the classical data into the Hilbert space

Uϕ(x) = exp

i
∑
S⊆[n]

ϕS (x)
∏
i∈S

Zi

 · H⊗n

(
Uϕ(x)

)d |0⟩ = |ψ(x)⟩

2. Estimate the kernel matrix with fidelity kernel function

Kij = |⟨ψ(xj )|ψ(xi )⟩|2 =

= |⟨0|
(
U†
ϕ(xj )

)d (
Uϕ(xi )

)d |0⟩|2

3. Perform classical SVM on quantum kernel matrix

Havĺıček, Vojtěch, et al. ”Supervised learning with quantum-enhanced feature spaces.” Nature 567.7747 (2019): 209-212.
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Hybrid SVM design

PCA



Training data reduction

Geometric reduction

▶ Reduction performed in the feature space

▶ The border of data clusters important
(especially for hm-SVM)

▶ Clusters obtained by K-means or X-means
algorithms

▶ ‘Guaranteed’ classification performance

▶ ∼ 10× reduction obtained

Superpixel segmentation

▶ Reduction performed on images

▶ Segments obtained with Simple Linear
Iterative Clustering (SLIC)

▶ Statistical measures extracted from segments

▶ Testing also has to be done on superpixels

▶ ∼ 1300× reduction obtained

▶ Bottlenecks: unsupervised (∼ 96% pixel
homogeneity), RGB features

Nalepa, Jakub, and Michal Kawulok. ”Selecting training sets for support vector machines: a review.” Artificial Intelligence Review 52.2 (2019): 857-900.
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Hybrid SVM design

PCA



Hybrid SVM design
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Target kernel alignment

Ideal kernel

K̄ij =

{
+1 if xi and xj are in the same class

−1 if xi and xj are in different classes.

For supervised learning problems

K̄ij = yiyj

Target kernel alignment

T (K) =
⟨K, K̄⟩F√

⟨K,K⟩F ⟨K̄, K̄⟩F
,

⟨A,B⟩F = Tr{ATB}

▶ Similarity measure between kernel K and the
ideal kernel K̄

▶ Related to “angle” between matrix vectors

cos(α)“ = ”
K · K̄

||K||||K̄||

▶ For general kernels

T (K) ≤ 1,

for QKE

T (K) ≤
1
√
2
.
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Toy model: Quantum beads

▶ Create N points on interval the [0, 1] with alternating classes

▶ Distribute them on one qubit with good separation between
classes

▶ One-parameter embedding map

H · RZ (γ · x) · H|0⟩

(H|0⟩ = |+⟩,H|+⟩ = |0⟩,H|−⟩ = |1⟩)
▶ For γ = π · (N − 1) we have a perfect separation

−1 → |0⟩, 1 → |1⟩

https://github.com/Quantum-Cosmos-Lab/quantum maps for beads
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Target kernel alignment landscape

https://github.com/Quantum-Cosmos-Lab/quantum maps for beads
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Hybrid SVM design

PCA



Data embeddings

=

The studied quantum kernels are labeled with the data embedding and number of PCA components used.

WSWS4
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Results

▶ First quantum-classical machine learning
model for cloud detection in satellite imagery

▶ Proof of concept that quantum-classical
algorithms are capable of performing useful
tasks on real-life data

▶ There is no advantage in simple quantum
kernels over classical kernels

▶ Comparison to the state of the art algorithms:
U-Nets: 95− 97% - after improving
superpixel segmentation QSVM comparable

▶ Built a baseline model on an open
multispectral data set Accuracy

N RBF4 WS4 WSWS4
1280 0.919(0.010) 0.911(0.031) 0.910(0.031)

AM et al. “Detecting Clouds in Multispectral Satellite Images Using Quantum-Kernel Support Vector Machines” arXiv:2302.08270
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Future direction

Improvement of the current model

▶ superpixel algorithm - including the NIR spectral band in segmentation
▶ other data reduction methods
▶ dealing with underparameterization of the kernels
▶ Including ZZ feature map-like data embeddings

Feature extraction and selection for hyperspectral satellite data

▶ Recursive Feature Elimination (RFE)

▶ Feature selection based on quantum optimization

▶ Feature selection based on variational methods - VQE, VQC

▶ Quantum PCA

▶ Quantum autoencoders

Thank you!
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Quantum Kernel Estimation

Kernel matrix elements given by an embedding state’s overlap

Kij = |⟨ϕ(xj )|ϕ(xi )⟩|2, O(m4.67/ϵ2)

Calculated by:

▶ Swap test

▶ Hadamard test

▶ Concatenating Hermitian conjugate

Kij = ⟨0|⊗n W †(Θ, x̃)W (Θ, x)|0⟩⊗n
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Target kernel alignment landscape: Barren Plateau?

https://github.com/Quantum-Cosmos-Lab/quantum maps for beads
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