Machine Learning in
Drug Discovery:

Applications and Whikcioon
Techniques

Artificial Intelligence in Research and

May Sth, 2022
ay Applications Seminar




Outline

Research interests
Data representation

Drug discovery

Methods



Research interests

L
|
AEsoiuke truth
S
i r.’._-J|'|:.1-_JI:rIJIEl:|_ "_.'_-J'-". %
=TT 4
i -- =~ i
:fﬂ.ﬁ?il’.rfn"-r-rr;rﬁi /:/ i ."‘Jr
source: Wikimedia Commons (Therea
Knotts)
representation learning supervised learning, XAI: Explainable Artificial
unsupervised learning Intelligence

hypothesis: the success of machine
learning algorithms depends on data
representation
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The image that shows an elephant. The predictive system. The output (prediction).

5/28



Representations

'elephant’

The image that shows an elephant. The predictive system. The output (prediction).
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Representations

We see this:

The computer sees this:
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Machine Learning problems: classification

ML systems return predictions from examples.
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Machine Learning problems: classification

e Point out the species of a particular fruit (i.e., apple, banana, pear)
e Point out not only the species of a particular fruit but also its variety (i.e., Golden Delicious,
Jonagold, Fuji)
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(a) Plum (b) Cashew () Kiwi (d) Fuji Apple 3‘
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(e) Melon (f) Nectarine (g) Pear (h) Peach
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(i) Watermelon  (j) Agata Potato (k) Orange (1) Taiti Lime

Rocha et al., 2010
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Machine Learning problems: classification

e We want to classify products as fruits or vegetables. T
e [et's represent a product as a list of numbers. 4 j
- What colour is it? \‘/r

- Does it contain seeds? source: Wikipedia

- Does it have leaves?
- oo o .

representation = (24, 1, 0) ><
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Machine Learning problems: classification

e Each product is a point in 3D space.
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Machine Learning problems: classification
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® The goal is to find a surface that
separates the products.

® For a new product, one has to
calculate a representation and point
out the side of the surface.
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Representations - history

@ @ @
feature engineering deep learning with representation
representation learning
learning
e features do not scale well ® usability
® limited expressivity ® expressivity
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Representations - feature engineerin
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18 colour orientation cells spatial blocks window X classification

Dalal and Triggs, 2005
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Representations - deep learning with representation learning
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Representations - representation learning

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Radford et al., 2021
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Drug discovery

Target-to-hit | ead
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WIP needed for 1 launch 243 194 14.6 12.4 1
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Cycle time (years) 1.0 5 2.0 1.0 ,
Cost per launch (out of pocket) | 524 549 Sl46 S62 544 S873
% Total cost per NME 3% 67% 17% 17 15% 21% 277% 576
Cost of capital 1%
Cost per launch (capitalized) 594 5166 S414 S150 S273 $319 S314 548 S1.778

[ Discovery [ Development

Paul et al., 2010
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Drug discover




Drug discover

Virtual screening (with machine learning) < - =

[ "
Enables to prioritize compounds from compound libraries which
have a high potential to bind to a target of interest.

o faster and cheaper than wet lab experiments

However: \' i

e restricted to the avaliable compounds;

properties: '
e uses hand-crafted features. - solubility; | FILTERING OPERATIONS, iﬁﬂge
- toxicity; | EMPIRICAL RULES properties
- bioactivity; +
. .
.
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Drug discover

Virtual screening (with machine learning) - =

|
Enables to prioritize compounds from compound libraries which

have a high potential to bind to a target of interest.

o faster and cheaper than wet lab experiments e Vo YN

However: \'

e restricted to the avaliable compounds;

properties: optmize
e uses hand-crafted features. - solubility; | FILTERING OPERATIONS, AFElME
- toxicity; EMPIRICAL RULES properties
REPRESENTATION _> - —} OUTPUT - bioactivity;
_\ - i) ': I.'-r\-"' f{
for classification 4‘%4‘? _\%" "
:: tasks (e.qg., active ;
linactive)
real value for *
.- ---‘-i“ |
o e 3 e s -
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Drug discover

Representations

Molecular graph

SMILES
C1=CC(=C(C=C1CCN)0)O

Dopamine

11010 1{O]1}1{0]0]1]1
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Drug discover

Representations

It shows the accurate modeling and prediction of molecular properties is strictly connected with

the choice of molecular representation (Cano et al., 2017; Wiercioch, 2018; Wiercioch, 2019;
Chuang et al., 2020).

Prediction Generation

FH

e Searching for molecules with desired properties from given compound libraries.

e Produce molecules that have desired properties.
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Methods

M. Wiercioch, On Modeling Objects Using Sequence of Moment Invariants, in Proceedings of
the 17th International Conference CISIM 2018, Olomouc, Czech Republic, 2018

® This paper explores the problem of rotational invariance of objects.

* A lot of compounds representations and metrics are available but none reflects the activity
satisfactory.

Theorem

Let us consider complex moments up to the order r > 2. Let a set of rotation invariants 5 be
constructed as follows:

B ={¢(p,q) =cpechalp=qgAp+g=<r}

where py and qq are arbitrary indices such that py + qo < r, po —qo = 1 and c,,,, # 0 for all
admissible one dimensional objects. Then B is a basis of all rotation invariants created from the
moments of any kind up to the order r.
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Methods

M. Wiercioch, Exploring the Potential of Spherical Harmonics and PCVM for Compounds
Activity Prediction, in International Journal of Molecular Sciences, 23 pages, 2019

* A methodology that involves Probabilistic Classification Vector Machines (PCVM) and
Spherical Harmonics-based descriptor.

e Experimental results for G protein-coupled receptors (GPCRs) demonstrate SHPCVM
produces the best performance ranging from 0.742 Accuracy to 0.862, and from 0.691 to
0.794 in terms of Matthew Correlation Coetficient. Although the goal was to find out a
tradeoff between the descriptive capabilities and computational costs of the descriptor, our
approach may pave the way for more interpretability oriented research on molecule's

b, A e >
a[% T, diEcrabaERaR \. top types of spherical harmonics
: * T — coefficients selection ‘
e O +© \

‘i* voxelization
molecule grid representation Spherical Harmonics descriptor

computational model.
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Methods

M. Wiercioch, S. Podlewska, Automated de-novo molecule design based on Deep Neural
Networks, in 14th German Conference on Chemoinformatics, Mainz, Germany, 2018

® We propose a molecular generative model called FGV AE that uses the grammar variational
autoencoder (GVAE) (Kusner et al., 2017).

* In our model, the molecular properties we want to consider were added as the extra
production rules that can be used for constructing a molecule.

0
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Methods

M. Wiercioch, J. Kirchmair, Deep Neural Network Approach to Predict Properties of Drugs and
Drug-Like Molecules, in ML for Molecules Workshop at NeurIPS 2020, Vancouver, Canada,

2020

® We propose a deep neural network-based architecture that learns molecular representation to

enhance the process of molecular properties prediction.

¢ The performance of our method is evaluated on the ESOL, FreeSolv, Lipophilicity, ClinTox,
BBBP, and BACE datasets from MoleculeNet.
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Methods

M. Wiercioch, J. Kirchmair, Dealing with a Data-limited Regime: Combining Transfer Learning
And Transformer Attention Mechanism to Increase Aqueous Solubility Prediction Performance,
in Artificial Intelligence in the Life Sciences, 2021

® We treat aqueous solubility prediction as a translation problem.
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Thank you!



