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Presentation plan

e Particle physics experiment workflow
e ML in particle track reconstruction
e MLindetector event simulation

e Hardware accelerated neural networks



Particle physics experiment workflow

e We have a physics problem that needs to be studied
o e.g.specific decay predicted by a new theory
e And the experiment (detector) that would be able to find effects of such prediction

e Using Monte Carlo methods it’s possible to simulate the experiment outcome
assuming known and confirmed physics

e Thanstatistical analysis of simulated and experimental data can be conducted

e When they differ - it may be a hint for more experiments
Or, if the difference is significant, a new physics discovery



Example: Higgs boson discovery in LHC (2012)

e Theory (Standard Model) predicts the existence of a

heavy particle that decays into two photons 000F — _
- CMS Preliminary —#— S/B Weighted Data
e From other experiments it was known that we should 1800 /s=7TeV,L=511f" ol et
look for it in the mass region between 116 and 127 1600 K [s=8TeV.L=53M" .1

=20

e With this information, we can extract the new signal
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Particle track reconstruction

Particle detectors generate a vast amount of multidimensional
(up to over 100 million channels) readout data

o Everychannel (dimension) corresponds to detector section

Collaborations at LHC predict they will generate 1 - 3 TB/s in the 2 years (ALICE)
o Insmaller experiments it's about ~200 - 300 GB/s

In each detector event (timeframe, microseconds) particles pass through

o  Path, momentum, charge, etc. of each particle has to be known for physics analysis -
- track reconstruction

Data is often sparse
o Each particle interacts only with a small part of the detector

Mainly classic (and difficult to parallelize) algorithms were used for this task



Machine learning for track reconstruction

e In 2018 and 2019 TrackML Challenge on Kaggle was organised by CERN
e Results were mixed, but graph neural networks (GNNs) turned out to be the
most promising approach

e Since then collaborations at CERN and other facilities evaluate and improve
GNN-based solutions for their tasks

e Maindifficulties include
o Efficient transformation of readout data into graphs

o  Complexity of detectors (size and existence of multiple subsystems of different
characteristics)



Example: PANDA Forward Tracker

e PANDA is an experiment under construction
at FAIR Facility (Darmstadt, Germany)

e FTisarelatively small (sub)detector

o ~12k straws with which particles interact

FT1 FT2

o  Grouped into 6 stations and 48 layers
o Eachstrawis an additional input channel

o Easytomodelinagraph structure

16x 10.1 mm = 161.6 mm




GNNSs in PANDA FT Input Graph
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e Interactions of particles with straw in one
detector event
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GNNs in PANDA FT

Output:

e |deally output should be the set of separate
graphs representing particle tracks

e Inrealworld it contains additional edges that
may lower accuracy
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GNNs in PANDA FT: Results and remarks

GNN-based approach was tested with simulated data
o  Synthetic case, homogeneous dataset
e Meets accuracy requirements
e Performance needs some improvement
o Especially the step of graph generation from raw data

e Number of edges in input graph can be lowered by eliminating physically impossible
connections

e Similar approaches studied by other experiments (CERN), often more advanced
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Detector event simulation

e Critical for conducting experiments
e Butalsoveryimportant
o  During design phase of new devices
o  For evaluation/maintenance of detectors and algorithms
e Traditionally conducted using Monte Carlo methods
o  Software: Geant3, Geant4, PYTHIA
e Consume a lot of computational resources

e More datacollected in larger new experiments result in need for
more simulations for adequate statistics



Machine learning for detector simulation

e Variations of generative adversarial networks (GANs) proposed

e Challenges

o Detector response vary a lot depending on type of particle and its physical
properties

o Generated (simulated) data has to be accurate to a certain level
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Example: ATLAS calorimeters simulation

ATLAS is located at LHC and is the largest particle physics [
experiment worldwide '

It's expected to be the one to discover new physics

As aresult it needs cary large sets of simulation data for
statistics

o  40% of ATLAS’ CPU computation resources is consume
for simulations

o  Computing infrastructure won't fulfill the needs with
current simulation software

Classic Monte Carlo simulation methods are CPU-bound
and vary hard or impossible to parallelize for GPUs

Machine learning and neural networks are explored as one
of alternatives
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ATLAS experiment and AtlFast3 framework

e The AtlFast3 framework was proposed for ATLAS

o Combines current Monte Carlo tool (Geant4) with simplified simulation
(FastrCaloSim) and GAN-based simulation (FastCaloGan)

o Depending on subsystem of the detector and simulated particle

Inner Muon

Calorimeters

FastCaloSimv2

FastCalo | FastCalo
(e7:\\ i
£, < (8-16) GeV 8—16) GeV < £ E,, > (256« $12) GeV

Detector Spectrometer

Muon
Punchthrough
+Geantd4
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ATLAS experiment and AtlFast3 framework

e 5xoverall performance improvement (CPU-time)
o 500x in calorimeter subsystem!
o with ‘2%’ accuracy drop
e Usage of GANs is limited to one type of particles in one subsystem
o Other areas will probably require different, or at least, differently trained, models

e Research on broader usage of GANs as well as improved performance and accuracy
continues
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Neural networks accelerated on FPGA

1/0 Blocks
What is FPGA? . D:l/aén:niﬂ:lk -
CE B O
e FPGA -Field Programmable Gate Array O |5 O O 0 £ \E
e Aset (array) of logic building blocks that can E Lr{) f}\ﬁg E
behave as any kind of logic gate each O [ECFOICECE \g\
e
e Accelerated algorithm is mapped directly to o L :Hi
the hardware (like in custom chip) BREERaR=E Interconnections

Logic Block
Can be programmed with high-level languages ogic Blocks

(C++-based)

Are now available as accelerator cards similar
to GPUs used for NN training (Xilinx Alveo)
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Neural networks accelerated on FPGA

Processing of live data in experiments (and other applications) is often constrained in terms
of computational resources and latency

FPGA-based accelerators have unique capabilities
o Upper bound on processing time can be strictly defined in clock cycles
o % of chip resources used by each accelerated procedure is well-known

o Many low level optimisation are possible and supported by hardware and
programming tools

o e.g.loop unrolling or usage of arbitrary precision fixed-point arithmetic types

There are tools available (hls4ml) that enable compilation of Keras, PyTorch and
TensorFlow code for FPGAs
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Neural networks accelerated on FPGA

e Research at CERN, Caltech and Google

e Extension of Keras and hls4ml
o Enables fixed-point arithmetic for network parameters
o For each network layer separately

e Resultsin significant reduction in on-chip resource usage for inference (4-layer dense NN)
o  With smallimpact on accuracy

e May be beneficial for many high-throughput, low-latency applications

e Aswell as resource constrained ones (loT, robotics?)

Model Accuracy (%] Latency [ns] Latency [clock cycles] DSP [%)] LUT (%] FF (%]

BF 744 15 9 56.0 (1,826) 5.2 (48,321) 0.8 (20,132)

BP 74.8 70 14 7.7 (526) 1.5 (17,577) 0.4 (10,548)

BH 73.2 70 14 1.3 (88) 1.3 (15,802) 0.3 (8,108)

Q6 74.8 55 ] 1.8 (124) 3.4 (39,782) 0.3 (8,128)

QE 72.3 55 11 1.0 (66) 0.8 (9,149) 0.1 (1,781)

QB 71.9 70 14 1.0 (69) 0.9 (11,193) 0.1 (1,771)

LogicNets JSC-M [47] 70.6 N/A2 N/A 0(0) 12 (14,428) 0.02 (440)

LogicNets JSC-L [47] 71.8 13b 5 0(0)  3.2(37,931) 0.03 (810)

2 Not evaluated. 18

b Using a clock frequency of 384 MHz.



Bibliography

1. Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC

C. Biscarat, S. Caillou, C. Rougier, J. Stark, J. Zahreddine
https.//arxiv.org/abs/2103.00916

2. Implementing Graph Neural Network for Track Finding

W. Esmail, T. Stockmanns, J. Ritman
https://indico.gsi.de/event/12231/contributions/52060/attachments/35053/46054/PandaMeeting.pdf

3. AtlFast3: the next generation of fast simulation in ATLAS,
The ATLAS Collaboration
https://arxiv.org/abs/2109.02551

4.  Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for
particle detectors

C.N. Coelho Jr,, A. Kuusela, S. Li, H. Zhuang, T. Aarrestad, V. Loncar, M. Pierini, A. A. Pol, S. Summers
https://arxiv.org/abs/2006.10159

19


https://arxiv.org/abs/2103.00916
https://indico.gsi.de/event/12231/contributions/52060/attachments/35053/46054/PandaMeeting.pdf
https://arxiv.org/abs/2109.02551
https://arxiv.org/abs/2006.10159

